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TrackingA tracking module for pose 
estimation using Kalman Filters1. Poses (a 

measurement) 

are taken from 

a pose estima-

tion framewo-

rk once every 

N frames

2. For (N-1) 

tracking frames, 

a measurement 

of position and 

velocity can be 

taken using an 

optical flow al-

gorithm and is 

integrated with 

the estimate 

from the pre-

vious timestep 

3. At every 

frame, ID ma-

tching is perf-

ormed between 

current and 

previous pose 

estimates

4. The poses 

are then used 

to update the 

Kalman Filter, 

with any mis-

sing joint mea-

surements repl-

aced by a predi-

ction from the 

Kalman Filter

5. The final 

estimate is a 

weighted avera-

ge of the measu-

rement and the 

state from the 

previous frame
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We propose a framework for the integration of data assimilation and machine learning methods in human 

pose estimation, with the aim of enabling any pose estimation method to be run in real-time, whilst also 

increasing consistency and accuracy. 

Our framework presents a real-time tracking module for any single or multi-person pose estimation 

system. Specifically, tracking is performed by a number of Kalman filters initiated for each new person 

appearing in a motion sequence. This permits tracking of multiple skeletons and reduces the frequency that 

computationally expensive pose estimation has to be run, enabling online pose tracking. 

The main contributions of this paper are the following:

• We provide a practical example of how Data Assimilation and Machine Learning methods can be 

combined and used in a complementary manner.

• We implement a Kalman filter-based tracking module that can be applied to any human motion 

estimation algorithm, decreasing the average run time per frame and increasing the consistency of joint 

position estimation.

• We perform a noise analysis on three motion estimation systems to obtain better measurement and 

noise covariance matrices for the filtering module.

• We implement an identification algorithm to improve consistency of labelling of skeletons between 

frames.

Kalman filters are powerful tools for dealing with measurement uncertainties and data inconsistencies. The 

equations of a Kalman filter also allow the definition of a dynamical model to describe the state evolution 

between timesteps. 

The general time update equations for a discrete Kalman filter are

We investigate how the value of N, the number of frames tracked, affects the 

performance of the model. In the Figure, we see Multiple Object Tracking Accuracy 

(MOTA) total scores and computation speed when the three methods are run alone, 

and when they are run with tracking over N frames. 

We can see that all three methods reach real-time tracking speed (30 FPS). For all 

three methods, there is a slight loss in MOTA performance with increasing N (8% and 

14.5% for STAF [4] and LightTrack [3] respectively). This means that our module allows 

the use of some of these powerful pose tracking methods in real time, without 

sacrificing too much accuracy. We also transform a pose estimation method, OpenPose

[2], into a pose tracking method.

We present a module that leverages both Data Assimilation and Machine Learning methods for human motion tracking. 

We can transform methods that perform pose estimation to pose tracking methods, or speed up existing pose tracking

methods to real-time speeds. The different Kalman filters show how simple but considered changes to the internal 

structure of the system can tweak performance in different ways. In addition, these filters are computationally 

inexpensive, and can easily be run alongside a more expensive network to increase the speed at which a motion 

sequence can be analyzed.

Data Assimilation and Machine Learning methods are often similar enough in structure to complement each other. The 

method proposed here does not rely on any particularity of human motion estimation to be successful; thus there is 

no reason why it could not be applied to other areas. Several of the inaccuracies we encounter in human motion 

tracking are actually common in computer vision applications and are simply due to inconsistencies in the 

interpretation of images. Data Assimilation is a field founded on resolving and working with inconsistencies and 

uncertainties in datasets and therefore is an area that can make a valuable contribution to the computer vision field. 

Figure 2: Difference between unfiltered (top of each pair) and filtered (bottom of each pair) sequences 

from the PoseTrack dataset [1] for LightTrack [3] (top), STAF [4] (middle) and Openpose[2] (bottom). 

Note how for LightTrack and STAF, filtering allows more joints to be tracked throughout several frames. 

For Openpose, the poses are all identified, but the ID of each person is not kept constant, which is fixed by 

filtering.
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Figure 1: MOTA 

Totals and 

computational 

speed (FPS) with 

N = [0, 2, 5, 10] 

for each method. 

The diamond 

markers show 

where each 

method achieves 

a real-time speed 

of 30FPS or 

higher.

where A is the state transition matrix, B is the input matrix, w is the process noise, and P, Q are the 

estimate and process covariance matrices respectively. The values n and l correspond to the state and input 

dimensions respectively. To these equations, we add the filter measurement update equations:

We track the position and velocity of each joint. To model the system kinematics, using the matrices A and 

B, we assume that each joint is following a motion path governed by the usual equations of motion

If we define x = [x_0, y_0, ...]T, so that we have a vector of the x- and y-positions for M joints, and 

consider a model position as the state vector and velocity as input, we have a matrix equation that looks 

like

In fact, for each of the three pose estimation methods (Optitrack [2], STAF [4], LightTrack [3]), we test 

four Kalman filters that describe different kinematic models:

1. Simple Linear Model: Position state vector [x], no input.

2. Velocity Input Model: Position state vector [x], velocity input vector [u]

3. Constant Velocity Model: Position and Velocity state vector [x, u]T, no input.

4. Acceleration Model: Position and velocity state vector [x, u]T, no input, process covariance matrix Q

contains acceleration information

where dt is the timestep between frames and  ∆T is a matrix of timesteps. In the second case, with both 

position and velocity forming the state vector [x, u], our equation becomes
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Thank you for reading! For more information please read our paper or contact us at

{caterina.buizza11, t.fischer, y.demiris} @imperial.ac.uk

Please find more details of the work we do in the Personal Robotics Lab at: 

www.imperial.ac.uk/personal-robotics/


