
Deep Neural Networks Spiking Neural Networks

• Use continuous activation values
• State-of-the-art in many tasks

• Use binary spikes
• Energy-efficient with low latencies
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Ensembles of Compact, Region-specific & Regularized
Spiking Neural Networks for Scalable Place Recognition
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Code: https://github.com/QVPR/VPRSNN
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Results

Learning from animal navigation and 
brain function in nature to develop 
intelligent robotic navigation systems.

Email: somayeh.hussaini@hdr.qut.edu.au
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Our goal is to develop a massively parallelized ensemble of spiking 
neural networks for visual place recognition, scaling up prior work [2].

(a) Nordland (b) Oxford RobotCar

An example of a summer query image correctly matched to 
its corresponding spring reference place.

• High tolerance to significant viewpoint changes
• Use of event streams from an event camera as input data
• Deployment on neuromorphic hardware (Intel's Loihi 2)
• Integration to a full SNN-based SLAM pipeline

Left: We train compact, localized spiking neural networks that solely recognize places in a local region of the 
environment. 
Middle: Independent training lacks global regularization, resulting in some neurons erroneously responding to places 
outside their area of expertise (we refer to these neurons as hyperactive). We detect and remove these neurons. 
Right: At deployment time, a query image is fed to all networks in parallel. As hyperactive neurons were removed, the 
strongest response of the remaining neurons in all networks is used for the place-matching decision.
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Given a query image, can we find the most similar reference 
image?
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Prior work: 100 places This work: 2700 places

We largely outperform prior SNN [2], and Ensemble SNN 
with hyperactive neurons, and the performance of our 
method is comparable to NetVLAD, DenseVLAD, and Sum-
of-Absolute Differences (SAD).
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