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Motivation
We strive to improve robotics by leveraging neuroscience

insights to develop advanced navigation systems. These
systems aim to enhance existing bio-inspired models, like

RatSLAM [1] and NeuroSLAM [2], which are handcrafted,

single-scale attractor networks.

Mechanisms in the brain for Spatial Navigation

Place Cells: encodes place by selectively
responding to unique spatial regions
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Head Direction Cells: encodes —
orientation by firing maximally in the
preferred direction

Grid cells: integrates spatial information // @
at different scales, by producing

tessellating firing patterns, that can be
combined to uniquely identify a place
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To provide challenging navigational scale ranges, we
contribute a flexible city-scale navigation simulator that

adapts to any street network.
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Methodology

Our proposed Multiscale Continuous Attractor Networks
(MCAN) is a bio-inspired neural network architecture with
parallel networks at various spatial scales. This allows the
network to operate at a wide range of velocities, without
incurring excessive memory usage. As shown below, MCAN
integrates linear velocity and head direction inputs at
various scales to generate trajectory estimates.
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Continuous Attractor Network Dynamics

An attractor network consists of recurrently connected
neurons that can integrate input information through the
excitation and inhibition of neighboring neurons [3]. The
following steps illustrates one network update at a single
scale.

/ \ Initialisation
Initialise the network as
a 2D gaussian with an

activation width of A x A

G(i. ) = exp <_ (i—m)® (- yo)2>

2 2
207 20,

(

G(i,j), ifielrg— Ao+ A,

X(0,i,7) = < j€yo— A yo+ A
0, otherwise
\ \ / Shifted Copy
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and store it as a copy
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Results

The absolute trajectory error for our multiscale system was
orders of magnitude lower than the single-scale baseline.

Dataset Single-scale Multiscale (ours)
Tokyo (CSN simulation) 1.093 £0.110 0.068 £ 0.010
Brisbane (CSN simulation) 0.934 +0.102 0.070 £ 0.019
Berlin (CSN simulation) 0.896 + 0.166 0.046 + 0.021
New York (CSN simulation) | 0.893 +0.137 0.070 £ 0.028
Kitti (odometry) 0.136 £0.138 0.041 £ 0.02

Performance

The MCAN accurately tracks the path across Kitti and
simulated trajectories, with improved performance at
regions of high velocity in comparison to the single scale
network.
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The multiscale and single scale networks were tested on 20
trajectories with increasing velocity ranges, revealing the
robustness to velocity change within the multiscale network.
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Future Direction
Develop a complete bio-inspired SLAM system with a dead

reckoning back end and localization front end, using the
CAN framework.

Acknowledgements

This work received funding from ARC Laureate Fellowship FL210100156 to MM, and from a grant from Intel Labs to TF
and MM. The authors acknowledge continued support from the Queensland University of Technology (QUT) through
the Centre for Robotics.




