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2) Overview: Sensitivity-Aware Features (SAFE)1) Task: Out-of-Distribution Object Detection
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Out-of-Distribution (OOD) object detection challenges deep networks to alert when 
test-time object detections do not belong to the training distribution.
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1) Residual connections ensure that input distances are 
preserved in the hidden space, making the network 
sensitive to input changes:

SAFE more than halves the false positive rate (FPR95) 
of previous state-of-the-art methods.A  MultiLayer Perceptron (MLP) is trained to 

distinguish SAFE features of clean in-distribution (ID) 
objects from perturbed ID objects:
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At test-time, the surrogate-trained MLP flags OOD 
objects by assigning them a higher score than known 
in-distribution objects: 

We identify two characteristics that signify a layer 
is sensitive to OOD samples:

2) Batch Normalisation layers trigger abnormal 
activations when presented with OOD data:

Residual connections followed immediately by batch 
normalisation (SAFE layers) exhibit both 
characteristics, thus making them sensitive to OOD data. 
Such connections already exist in pretrained ResNet-like 
architectures.

SAFE layers are consistently among the most 
powerful layers across distributional shifts.
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Method OpenImages MS-COCO OpenImages MS-COCO

AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95#
MSP [2] 81.91 73.13 83.45 70.99 77.38 79.04 75.87 80.94
ODIN [5] 82.59 63.14 82.20 59.82 76.61 58.92 74.44 62.85
Energy [6] 82.98 58.69 83.69 56.89 79.60 54.97 77.48 60.06
KNN [7] 85.08 55.73 86.07 54.50 88.37 44.50 87.45 47.28
G-ODIN [3] 79.23 70.28 83.12 59.57 87.18 50.17 85.22 57.27
CSI [8] 82.95 57.41 81.83 59.91 87.99 37.06 84.09 47.10
GAN-Syn [4] 82.67 59.97 83.67 60.93 81.25 50.61 78.82 57.03
VOS-RN50 [1] 85.23 51.33 88.70 47.53 88.52 35.54 86.87 44.27
VOS-RX4.0 [1] 87.59 48.33 89.00 47.77 92.13 27.24 89.08 36.61
SAFE-RN50 92.28 20.06 80.30 47.40 94.64 16.04 88.96 32.56
SAFE-RX4.0 94.38 17.69 87.03 36.32 95.97 13.98 93.91 21.69

Table 1. OOD detection results comparing SAFE to state-of-the-art OOD detectors. Comparison metrics are FPR95 and AUROC, direc-
tional arrows indicate if higher (") or lower (#) values indicate better performance. Best results are shown in red and bold, second best
results are shown in orange. Methods that require retraining are indicated with a checkmark X. Mean and standard deviation over 5 seeds
is shown for SAFE. We observe that SAFE provides strong performance across almost all benchmarks and metrics, achieving the highest
performance across 7 out of 8 of the benchmark permutations. Notably, we observe substantial reductions in FPR95, particularly when
OpenImages is the OOD set, with a greater than 30% reduction for both backbones under the PASCAL-VOC setting.

L1 · ‖x− x∗‖I ≤ ‖f(x)− f(x∗)‖F ≤ L2 · ‖x− x∗‖I

BatchNorm(z; γ, β, ε) =
z − Ein[z]
√

Vin[z] + ε
· γ + β

ŷd = fβ(qd) ŷ ∈ [0, 1]


