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2) Overview: Sensitivity-Aware Features (SAFE)

1) Task: Out-of-Distribution Object Detection

Out-of-Distribution (OOD) object detection challenges deep networks to alert when
test-time object detections do not belong to the training distribution.
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5) Experimental Results

SAFE more than halves the false positive rate (FPR95)

of previous state-of-the-art methods.
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3) Identifying Sensitive Features 4) Surrogate Training

A MultiLayer Perceptron (MLP) 1s trained to
distinguish SAFE features of clean in-distribution (ID)
objects from perturbed ID objects:

Sensitivity-Aware

We 1dentify two characteristics that signify a layer
1s sensitive to OOD samples:
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1) Residual connections ensure that input distances are
preserved 1n the hidden space, making the network
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2) Batch Normalisation layers trigger abnormal
activations when presented with OOD data:
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Residual connections followed immediately by batch
normalisation (SAFE layers) exhibit both
characteristics, thus making them sensitive to OOD data.
Such connections already exist in pretrained ResNet-like
architectures.
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At test-time, the surrogate-trained MLP flags OOD
objects by assigning them a higher score than known
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SAFE layers are consistently among the most
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powerful layers across distributional shifts.
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