
Hyperdimensional Feature Fusion For 
Out-of-Distribution Detection
Samuel Wilson1, Tobias Fischer1, 
Niko Sünderhauf1, Feras Dayoub2

1QUT Centre For Robotics
2Australian Institute for Machine Learning

6) Experimental Results

Find our code 
on GitHub!

github.com/SamWilso/HDFF_Official

HDFF outperforms baselines and produces competitive 
results against Gram with ~4.5x faster inference time.

HDFF is compatible with OOD-based training paradigms 
and other post-hoc OOD detectors.

5) Cosine Similarity Test
Test-time samples are scored based on the angle of their 
image descriptor to the nearest class bundle:

2) Task: Out-of-Distribution Detection
Out-of-Distribution (OOD) detection challenges deep 
networks to alert when test-time input samples do not 
belong to the training distribution.
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3) Feature Extraction and Projection

Feature vectors are projected into
hyperdimensional vectors:

Feature maps are extracted from all Conv layers and 
pooled down to a vector:

1) Method: Hyperdimensional Feature Fusion (HDFF)
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4) Feature Aggregation via Bundling
Image Descriptors are created by bundling over the multi-
scale features for an input sample:

Class Bundles are the bundled image descriptors for each 
class:

Algorithm 1 Computation of the model-wise class descrip-
tors and ensemble descriptor vectors from training set.

Inputs: Set of images from the training set x{1,...,I} with
corresponding labels j{1,...,I}. Set of models in an ensem-
ble f{1,...,E} that produces a set of feature maps m{1,...,L}
given an input x(i).
Outputs: Set of class descriptor vectors per input model
d
(e)
{1,...,c} and a set of ensemble class descriptor vectors d⇤

for e 2 {1,. . . ,E} do
for i 2 {1,. . . ,I} do

m
(i)
{1,...,L}  fe(x(i))

for l 2 {1,. . . ,L} do
v
(i)
l  Pool(m(i)

l )

h
(i)
l  Pl · v(i)l

end for
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end for
end for
d
⇤  (d(1) ⌦ z

(1))� ...� (d(E) ⌦ z
(E))

application in OOD detection. We therefore impose that the
projection matrices Pl preserve the inner product of any two
vectors a and b in their original and their projected vector
spaces. Formally, this means that

(P · a)T · (P · b) = aT · b (1)
aT ·PT ·P · b = aT · b (2)

Above condition is satisfied by any matrix that fulfils the
requirement PTP = I, which is the defining property of
a semi-orthogonal matrix. Using the approach of [51], we
therefore create a unique, pseudo-random, semi-orthogonal
projection matrix Pl for each of the considered layers l.
These project the feature vectors vl into a common m-
dimensional vector space:

hl = Plvl so that hl 2 Rm 8l 2 {1, . . . , L} (3)

Feature Bundling Following the previous steps, we ob-
tain a set of L high-dimensional vectors h(i)

l for an input
image x(i). Since all h(i)

l are elements of the same vec-
tor space, we can use the bundling operation � to combine
them into a single vector y(i) that serves as an expressive
descriptor for the input image x(i):

y(i) =
LM

l=1

h(i)
l =

LM

l=1

Pl · v(i)
l (4)

As explained in Section 3, the resulting vector y(i) will be
cosine-similar to all contributing vectors h(i)

l , but dissimilar

to vectors from Rm that were not part of the bundle. Essen-
tially, y(i) provides a summary of the feature vectors v(i)

l of
the entire network for a single image x(i).

By bundling the descriptors of all images from the train-
ing set belonging to class c, we obtain a class-specific de-
scriptor dc:

dc =
M

j2Ic
y(j) (5)

where Ic denotes the set of indices of the training images
belonging to class c.

As discussed in Section 3, the bundling operation � can
be implemented in various ways. We implement � to be an
element-wise sum, without truncation.

Out-of-Distribution Detection During testing or deploy-
ment, an image x can be identified as OOD by obtaining
its image descriptor y according to (4), and calculating the
cosine similarity to each of the class-specific descriptors dc.
Let ✓ be the angle to the class descriptor dc that is most
similar to y

✓ = min
c

cos�1

✓
yTdc

kyk · kdck

◆
, c 2 {1, . . . , C}, (6)

The input x is then treated as OOD if ✓ is bigger than a
threshold: ✓ > ✓

⇤.
Ensembling While HDFF does not rely on ensembling,

we briefly show that our method is amenable to ensembling
to further boost performance (however at the cost of added
compute). When using a set of pretrained networks fe in an
ensemble e 2 {1, . . . , E} we collect inputs from all models
and fuse them into singular image and class descriptors y⇤
and d⇤ respectively. For each model f{1,...,E} the same pro-
cess using equations (4) and (5) is used to compute the set of
class descriptors for each model in the ensemble d{1,...,E}.
To ensure that each class descriptor is sufficiently distinct
from all other descriptors, a set of random hyperdimensional
vectors z(e) are generated and bound ⌦ to the class descrip-
tor. By bundling the bound class descriptors, we obtain the
ensemble class descriptor d⇤:

d⇤ =
EM

e=1

d(e) ⌦ z(e) (7)

When new input samples arrive y⇤ is computed according
to (7) by substituting d for y. OOD detection is done ac-
cording to (6) using d⇤ and y⇤.

5. Experiments
We conduct a series of experiments to demonstrate the

efficacy of Hyperdimensional Feature Fusion for OOD detec-
tion. We compare HDFF to the current state-of-the-art in the
typical far-OOD settings, where the distributions of the of
ID and OOD are very dissimilar (e.g. CIFAR10! SVHN),
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Statistics Stream - CIFAR10
OOD HDFF HDFF-Ens Gram MSP ML Energy

Dataset (Ours) (Ours) [50] [19] [18] [31]
iSun 99.2 99.3 99.9 96.4 97.8 92.6
TINc 98.3 98.4 99.4 95.4 96.8 -
TINr 99.2 99.4 99.8 95.0 96.5 -
LSUNc 96.2 96.8 98.1 95.7 97.1 98.4
LSUNr 99.2 99.4 99.9 96.5 98.0 94.2
SVHN 99.4 99.5 99.4 96.0 97.2 91.0
MNIST 99.6 99.7 99.97 89.4 90.6 -
KMNIST 99.0 99.1 99.98 92.7 93.4 -
FMNIST 98.7 99.1 99.8 93.6 95.2 -
Textures 94.5 94.8 98.2 92.7 93.5 85.2
CIFAR100 75.4 75.8 79.4 87.8 87.3 -
Average 96.2 96.5 97.6 93.7 94.9 93.2

Table 1. OOD detection results for the against the methods con-
tained belonging to the statistics stream. Comparison metric is
AUROC, higher is better. Best results are shown in blue and bold,
second best results are shown in green and italics. The ensemble
in HDFF-Ens always consists of 5 models. HDFF and Gram are
consistently the top two performers across the significant majority
of the far-OOD detection settings.

Training Stream - CIFAR10
OOD HDFF-MLP HDFF-1DS 1DS NMD DDU MOOD

Dataset (Ours) (Ours) [59] [10] [37] [30]
iSun 99.99 99.9 - 99.9 - 93.0
TINc 99.9 99.7 98.1 99.2* 91.1* -
TINr 99.96 99.8 98.5 - 91.1* -
LSUNc 98.2 99.1 99.4 98.8 - 99.2
LSUNr 99.99 99.9 99.3 - - 93.3
SVHN 84.8 99.2 - 99.6 97.9 96.5
MNIST 99.4 99.3 - - - 99.8
KMNIST 98.6 99.3 - - - 99.9
FMNIST 99.6 99.3 - - - 99.9
Textures 97.4 97.3 - 98.9 - 93.3
CIFAR100 69.9 90.7 - 90.1 91.3 -
Average 95.2 98.5 98.8 97.8 94.6 95.0

Table 2. OOD detection results for the against the methods con-
tained belonging to the training stream. Comparison metric is
AUROC, higher is better. Best results are shown in blue and bold,
second best results are shown in green and italics. Published re-
sults that are unclear which variant of TIN they correspond to are
identified with a *. The incorporation of HDFF into pre-existing
pipelines leads to consistently improving or comparable results,
demonstrating the robust nature of HDFF.

HDFF.
Unless otherwise stated, we operate in a hyperdimen-

sional space of 104 dimensions, we ablate this hyperparam-
eter in the Supplementary Material. Before projecting fea-
ture maps into the hyperdimensional space as per (5), we
apply mean-centering by subtracting the layer-wise mean
activations (obtained from the training set) from all ml. For
pooling we apply max pooling over the spatial dimensions
to reduce our feature maps ml to a vector representation,
we ablate the effect of this choice in the Supplementary
Material.

5.2. Results and Discussion

Table 1 compares the results of our HDFF OOD detector
on the AUROC metric to all of the methods in the statis-
tics stream under both the near- and far-OOD settings. In

Figure 2. F1-score for binarisation at different critical values of
angular distance to closest class descriptor. The model used is the
1D Subspaces trained WideResNet. The grey region corresponds
to binarisations that would produce a result within 5% of the maxi-
mum F1-score achieved for all far-OOD datasets. To avoid clutter,
far-OOD datasets have been grouped: i) MNIST (AVG) contains
KMNIST, MNIST and FashionMNIST. ii) SUN (AVG) contains
iSUN, LSUNr and LSUNc. iii) Other (AVG) contains all other
far-OOD datasets. As expected, the near-OOD task (CIFAR100)
leads to significantly lower thresholds compared to all far-OOD
tasks.

the far-OOD setting HDFF and Gram are consistently the
top performers with small performance differences of less
than 1% AUROC between the two methods on most OOD
dataset configurations. This finding indicates that the feature
representations of the in-distribution data from both Gram
and HDFF are powerful for the far-OOD detection task. On
this note, we identify that the vector representation of HDFF
is far more compact than the square matrix representations
from Gram. The difference in representation complexity ac-
counts for the performance differences, but also introduces
large gaps in computational performance with gram requir-
ing ⇡4.5x longer per inference pass compared to HDFF as
described in Section 5.3.

We note that the MSP detector outperforms all other meth-
ods in the statistics stream in the near-OOD detection setting
(CIFAR10 as in-distribution and CIFAR100 as OOD). Con-
sidering that HDFF is effectively detecting deviations in con-
volutional feature activations this would indicate that images
with similar features are being grouped with in-distribution
classes, this behaviour is discussed more in Section 5.6.

Table 2 compares the results of the methods in the train-
ing stream on the AUROC metric in the near- and far-OOD
settings. The first finding from this table is the broadly
powerful nature of the HDFF vector representation in com-
bination with the MLP. Across the board, the majority of
the top performing results are from the HDFF MLP detector
demonstrating the power of the HDFF representation when
combined with latest state-of-the-art detectors.

Secondly and more specifically, we note that when HDFF
is applied to the 1D Subspaces trained model it improves
upon the performance of the Spectral Discrepancy detector
on 3 out of the 4 comparable benchmarks. We addition-
ally note that the Spectral discrepancy detector requires 50
SWA-G [33] samples to achieve these performance levels
whilst the HDFF detector requires only one inference pass,
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in HDFF-Ens always consists of 5 models. HDFF and Gram are
consistently the top two performers across the significant majority
of the far-OOD detection settings.
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pipelines leads to consistently improving or comparable results,
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ture maps into the hyperdimensional space as per (5), we
apply mean-centering by subtracting the layer-wise mean
activations (obtained from the training set) from all ml. For
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to reduce our feature maps ml to a vector representation,
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mum F1-score achieved for all far-OOD datasets. To avoid clutter,
far-OOD datasets have been grouped: i) MNIST (AVG) contains
KMNIST, MNIST and FashionMNIST. ii) SUN (AVG) contains
iSUN, LSUNr and LSUNc. iii) Other (AVG) contains all other
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the far-OOD setting HDFF and Gram are consistently the
top performers with small performance differences of less
than 1% AUROC between the two methods on most OOD
dataset configurations. This finding indicates that the feature
representations of the in-distribution data from both Gram
and HDFF are powerful for the far-OOD detection task. On
this note, we identify that the vector representation of HDFF
is far more compact than the square matrix representations
from Gram. The difference in representation complexity ac-
counts for the performance differences, but also introduces
large gaps in computational performance with gram requir-
ing ⇡4.5x longer per inference pass compared to HDFF as
described in Section 5.3.

We note that the MSP detector outperforms all other meth-
ods in the statistics stream in the near-OOD detection setting
(CIFAR10 as in-distribution and CIFAR100 as OOD). Con-
sidering that HDFF is effectively detecting deviations in con-
volutional feature activations this would indicate that images
with similar features are being grouped with in-distribution
classes, this behaviour is discussed more in Section 5.6.

Table 2 compares the results of the methods in the train-
ing stream on the AUROC metric in the near- and far-OOD
settings. The first finding from this table is the broadly
powerful nature of the HDFF vector representation in com-
bination with the MLP. Across the board, the majority of
the top performing results are from the HDFF MLP detector
demonstrating the power of the HDFF representation when
combined with latest state-of-the-art detectors.

Secondly and more specifically, we note that when HDFF
is applied to the 1D Subspaces trained model it improves
upon the performance of the Spectral Discrepancy detector
on 3 out of the 4 comparable benchmarks. We addition-
ally note that the Spectral discrepancy detector requires 50
SWA-G [33] samples to achieve these performance levels
whilst the HDFF detector requires only one inference pass,

Algorithm 1 Computation of the model-wise class descrip-
tors and ensemble descriptor vectors from training set.

Inputs: Set of images from the training set x{1,...,I} with
corresponding labels j{1,...,I}. Set of models in an ensem-
ble f{1,...,E} that produces a set of feature maps m{1,...,L}
given an input x(i).
Outputs: Set of class descriptor vectors per input model
d
(e)
{1,...,c} and a set of ensemble class descriptor vectors d⇤

for e 2 {1,. . . ,E} do
for i 2 {1,. . . ,I} do

m
(i)
{1,...,L}  fe(x(i))

for l 2 {1,. . . ,L} do
v
(i)
l  Pool(m(i)

l )

h
(i)
l  Pl · v(i)l

end for
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(i)  h
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1 � h

(i)
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(i)
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(e)
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end for
end for
d
⇤  (d(1) ⌦ z

(1))� ...� (d(E) ⌦ z
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application in OOD detection. We therefore impose that the
projection matrices Pl preserve the inner product of any two
vectors a and b in their original and their projected vector
spaces. Formally, this means that

(P · a)T · (P · b) = aT · b (1)
aT ·PT ·P · b = aT · b (2)

Above condition is satisfied by any matrix that fulfils the
requirement PTP = I, which is the defining property of
a semi-orthogonal matrix. Using the approach of [51], we
therefore create a unique, pseudo-random, semi-orthogonal
projection matrix Pl for each of the considered layers l.
These project the feature vectors vl into a common m-
dimensional vector space:

hl = Plvl so that hl 2 Rm 8l 2 {1, . . . , L} (3)

Feature Bundling Following the previous steps, we ob-
tain a set of L high-dimensional vectors h(i)

l for an input
image x(i). Since all h(i)

l are elements of the same vec-
tor space, we can use the bundling operation � to combine
them into a single vector y(i) that serves as an expressive
descriptor for the input image x(i):

y(i) =
LM

l=1

h(i)
l =

LM

l=1

Pl · v(i)
l (4)

As explained in Section 3, the resulting vector y(i) will be
cosine-similar to all contributing vectors h(i)

l , but dissimilar

to vectors from Rm that were not part of the bundle. Essen-
tially, y(i) provides a summary of the feature vectors v(i)

l of
the entire network for a single image x(i).

By bundling the descriptors of all images from the train-
ing set belonging to class c, we obtain a class-specific de-
scriptor dc:

dc =
M

j2Ic
y(j) (5)

where Ic denotes the set of indices of the training images
belonging to class c.

As discussed in Section 3, the bundling operation � can
be implemented in various ways. We implement � to be an
element-wise sum, without truncation.

Out-of-Distribution Detection During testing or deploy-
ment, an image x can be identified as OOD by obtaining
its image descriptor y according to (4), and calculating the
cosine similarity to each of the class-specific descriptors dc.
Let ✓ be the angle to the class descriptor dc that is most
similar to y

✓ = min
c

cos�1

✓
yTdc

kyk · kdck

◆
, c 2 {1, . . . , C}, (6)

The input x is then treated as OOD if ✓ is bigger than a
threshold: ✓ > ✓

⇤.
Ensembling While HDFF does not rely on ensembling,

we briefly show that our method is amenable to ensembling
to further boost performance (however at the cost of added
compute). When using a set of pretrained networks fe in an
ensemble e 2 {1, . . . , E} we collect inputs from all models
and fuse them into singular image and class descriptors y⇤
and d⇤ respectively. For each model f{1,...,E} the same pro-
cess using equations (4) and (5) is used to compute the set of
class descriptors for each model in the ensemble d{1,...,E}.
To ensure that each class descriptor is sufficiently distinct
from all other descriptors, a set of random hyperdimensional
vectors z(e) are generated and bound ⌦ to the class descrip-
tor. By bundling the bound class descriptors, we obtain the
ensemble class descriptor d⇤:

d⇤ =
EM

e=1

d(e) ⌦ z(e) (7)

When new input samples arrive y⇤ is computed according
to (7) by substituting d for y. OOD detection is done ac-
cording to (6) using d⇤ and y⇤.

5. Experiments
We conduct a series of experiments to demonstrate the

efficacy of Hyperdimensional Feature Fusion for OOD detec-
tion. We compare HDFF to the current state-of-the-art in the
typical far-OOD settings, where the distributions of the of
ID and OOD are very dissimilar (e.g. CIFAR10! SVHN),

Figure 4. KDE estimate of separation between ID and OOD sets
based on minimum angular distance to closest class representa-
tive in the CIFAR10 setting. To avoid clutter, far-OOD datasets
have been grouped: i) MNIST (AVG) contains KMNIST, MNIST
and FashionMNIST. ii) SUN (AVG) contains iSUN, LSUNr and
LSUNc. iii) Other (AVG) contains all other far-OOD datasets.
Overlap between the test and OOD distributions can be considered
erroneous samples.

input sets of raw features. Since these features are extracted
from a deep CNN, the angular distance between any two vec-
tors is a proxy for their visual dissimilarity. This definition
leads to intuitive understandings of how HDFF behaves and
identifying failure cases; we discuss these points here.

Using our definition, since HDFF separates based on
visual similarity, we can infer that failures in OOD detection
are due either to ID samples being visually dissimilar to the
training set or OOD samples are as similar, if not more so, to
the training set than the ID samples. To aid in understanding
this, Figure 4 visualises the differences in distributions of
angular distance between the ID and OOD datasets in the
CIFAR10 ID setting through a KDE estimate (for smoothing)
over binned angular distances on the HDFF 1D Subspaces
model. The area of overlap between the test set and any OOD
set can be considered as erroneous detection. Inspecting
Figure 4, we observe that, in the far-OOD settings, errors
due to dissimilar ID samples are more likely to appear due
to the distributional shift between the training and testing
distributions, i.e. false positives. By contrast, in the near-
OOD detection task we see that a significant number of
errors are due to OOD samples appearing very similar to ID
samples, i.e. false negatives.

As a more concrete example, Figure 5 demonstrates
HDFF separating input samples based on the angle to the
nearest class descriptor vector, in this case, the CIFAR10
truck class. Consistent with our previous assertions, we ob-
serve in Figure 5 that samples that are < 15� from the class
descriptor vector appear visually very similar, with no far-
OOD samples occupying this range. In the range of 15�30�

we observe that samples from all datasets still have vehicle-
like appearance, but whether or not these accurately repre-
sent a truck is debatable; this region is still predominantly
populated by ID and near-OOD samples. Once outside the
30� ring, we see that the significant majority of samples
do not appear vehicle-like with the very few ID samples in
this region having the truck visually obscured; this region is
dominated by far-OOD samples.

Figure 5. Sample images from in-distribution (CIFAR10, blue),
near-OOD (CIFAR100, green) and far-OOD (TINc, red) datasets
with their approximate distance to the nearest class descriptor vec-
tor, corresponding to the CIFAR10 ID truck class. The underlying
model is the 1D Subspaces trained WideResNet. Distances to the
class bundle (centre blue dot) can be approximately inferred from
which circle the sample is encapsulated by. This figure reinforces
the hypothesis that HDFF separates based on visual similarity to
the in-distribution class as truck-like objects appear within the in-
ner circle, vehicle-like objects in the middle region and heavily
dissimilar object falling outside both of those regions.

6. Conclusion
This paper introduced powerful ideas from hyperdimen-

sional computing into the important task of OOD detection.
We investigate the sensitivity of individual layers to OOD
data and find that the fusion of feature maps provides the
best general performance with no requirements for OOD
data to fine-tune on. We perform competitively with state-
of-the-art OOD detection methods with the added benefit
of significantly reducing the computational costs associated
with the current state-of-the-art. We show the interpretation
of cosine distance as a proxy for visual similarity allows
for additional failure diagnosis capabilities over competing
methods. In this paper, we utilised the simple but powerful
element-wise addition for bundling, however, this is one of
potentially many applications of HDC to DNNs, opening
new future research directions.
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