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1) Method: Hyperdimensional Feature Fusion (HDFF)
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Out-of-Distribution (OOD) detection challenges deep
networks to alert when test-time mput samples do not
belong to the training distribution.
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3) Feature Extraction and Projection

Feature maps are extracted from all Conv layers and

pooled down to a vector:
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Feature vectors are projected into
hyperdimensional vectors:
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4) Feature Aggregation via Bundling

Image Descriptors are created by bundling over the multi-
scale features for an input sample:
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Class Bundles are the bundled 1image descriptors for each

class:

5) Cosine Similarity Test

Test-time samples are scored based on the angle of their
image descriptor to the nearest class bundle:
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6) Experimental Results

HDEFF outperforms baselines and produces competitive
results against Gram with ~4.5x faster inference time.
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HDEFF 1s compatible with OOD-based training paradigms
and other post-hoc OOD detectors.
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