
Human-in the-Loop Segmentation of Multi-species Coral Imagery

Scarlett Raine1,2, Ross Marchant3, Brano Kusy2, Frederic Maire1, Niko Sünderhauf1, Tobias Fischer1

1QUT Centre For Robotics    2CSIRO Data61     3Image Analytics

Find our code on GitHub: https://github.com/sgraine/HIL-coral-segmentation

Method
Label 

Style

PA

5 / 10 / 25 / 300

mIoU

5 / 10 / 25 / 300

Time per Image (s)

5 / 10 / 25 / 300

Fast MSS [31] Rand. 7.3 / 13.5 / 30.1 / 86.8 6.6 / 12.1 / 28.5 / 80.1 2.1 / 2.2 / 2.2 / 2.8

Fast MSS [31] Grid 6.4 / 13.9 / 39.2 / 90.0 5.9 / 12.8 / 35.5 / 86.4 2.4 / 2.5 / 2.4 / 3.0

Point Label Aware Superpixels – Ens. [32] Rand. 52.7 / 62.0 / 71.1 / 92.5 25.9 / 35.6 / 50.5 / 85.5 4.3 / 4.6 / 5.0 / 5.4

Point Label Aware Superpixels – Ens. [32] Grid 54.2 / 65.8 / 76.3 / 94.6 30.0 / 40.3 / 59.8 / 89.4 4.1 / 4.3 / 5.2 / 5.3

Ours: Denoised DINOv2 + NN Rand. 55.7 / 64.5 / 75.1 / 88.8 32.1 / 42.8 / 58.0 / 81.8 4.9 / 4.6 / 4.7 / 4.9

Ours: Denoised DINOv2 + NN Grid 57.7 / 69.1 / 78.7 / 89.9 35.7 / 50.6 / 64.4 / 85.8 4.8 / 4.7 / 4.8 / 4.7

Ours: Denoised DINOv2 + NN HIL 71.6 / 76.4 / 81.3 / 89.6 52.6 / 59.5 / 68.0 / 85.0 4.7 / 5.0 / 20.0 / 273.1
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• Uses cosine similarity between pixel’s features and the features of the most similar 

labeled point to propose informative pixel locations for labeling

• Broad-scale marine surveys by 

underwater vehicles generate 

large amounts of images which 

are costly and time-consuming 

for domain experts to label

• Prior approaches assume 100-

300 sparse point labels per 

image for point label 

propagation; here we focus on 

5-25 points

• If only 5 point labels per image are available, we outperform the state-of-the-art by 17.3% for pixel accuracy and 

22.6% for mIoU on the UCSD Mosaics dataset

• If HIL labeling is not used, we still outperform by 3.5% for pixel accuracy and 5.7% for mIoU (5 grid points)

• Grid labels improve point label propagation performance over random labels for all approaches

• For greater than 100 points per image, improvement is marginal with PLAS [32] or our DINOv2+KNN approach

• For very few points per image, it is beneficial to incorporate domain expert knowledge in labeling pixels

Our Approach:
Prior Approaches

Denoised DINOv2 with Clustering in Deep Embedding Space

• Obtain template feature vectors for labeled points from a denoised DINOv2 feature extractor and 

perform clustering in the deep embedding space to obtain an augmented ground truth mask

• The denoising DINOv2 model groups pixels into meaningful segments and reduces artefacts, resulting 

in smoother, cleaner features and improved clustering

Human-in-the-Loop (HIL) Labeling Regime

• Denoised DINOv2 is sufficient 

without any pre-training or fine-

tuning on domain-specific imagery

• Reduces labels required by up to 

98%
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