VPRTempo: A Fast Temporally Encoded Spiking Neural Network for Visual Place Recognition Adam D. Hines, Peter G. Stratton, Michael Milford, & Tobias Fischer **Acknowledgements** Centre for Robotics QUT Centre for Robotics, Queensland University of Technology, Brisbane QLD, Australia inte Email: adam.hines@qut.edu.au

Introduction

Database

How do robots localize based on previously visited places in real time?

The Challenge

Question

Can we find the most similar reference image given a query Incorrect match image using low latency spiking neural networks?

Methodology

Temporal Coding Scheme

Traversal dataset

Query

Database	Ground Truth	VPRTempo
	Query	Spike amplitude

Goal

Develop a real-time capable spiking neural network to perform visual place recognition, using biologically inspired learning.

Image 1 Image 2 Image n

Spike amplitude (Pixel intensity)

Spike efficiency was improved over 100%, when compared to rate encoded systems, by encoding pixel intensities as spike timings within a timestep.

143

Network Architecture

Highly efficient learning & deployment

Combining our unique temporal coding scheme [1] with efficient learning rules, VPRTempo is capable of learning large reference databases with real-time capability, achieving significantly faster deployment than other spiking neural networks [2].

We developed a 3-layer network & one-hot encode the output neurons to represent one unique place. Networks are split into expert modules to improve precision and scalability.

Results: Performance and precision

		Nordland (3300 places)					-VPRTempo - SAD - VPRSNN - NetVLAD - GCL
-	Method	R@1 (%)	Train CPU (min)	Query CPU (Hz)	Train GPU (min)	Query GPU (Hz)	$\begin{bmatrix} 1.0 \\ 0.0 \end{bmatrix}$ $\begin{bmatrix} 1.0 \\ -0.0 \end{bmatrix}$
	SAD [33] NetVLAD [11]	48	- 15120	10 0.5	- 1512 260	17 31 77	-8.0 gevents and the second se
	GCL [14] VPRSNN [8]	<u> </u>	360 360	2	360		

Compared to conventional and state-of-the-art place recognition systems, VPRTempo was trained and deployed orders of magnitude faster. We did not trade-off precision, as we perform comparably to these methods.

Conclusions

- We present the first temporally encoded spiking neural network for visual place recognition.
- A real-time capable place recognition system, suitable for resource contrained platforms.
- Developed an accurate network with modular capabilities for large scale place recognition.

[1] Stratton, Wabnitz, Essam, Cheung, & Hamilton: arXiv 2022, Making a Spiking Net Work: Robust brain-like unsupervised machine learning [2] Hussaini, Milford, & Fischer: ICRA2023, Ensembles of Compact, Region-specific & Regularized Spiking Neural Networks for Scalable Place Recgnoition

15 20 25