VPRTempo: A Fast Temporally Encoded Spiking Neural Network for Visual Place Recognition
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Highly efficient learning & deployment We developed a 3-layer network & one-hot encode
Combining our unique temporal coding scheme [1] with efficient the output neurons to represent one unique place.
learning rules, VPRTempo is capable of learning large reference Networks are split into expert modules to improve
databases with real-time capability, achieving significantly precision and scalability.

faster deployment than other spiking neural networks [2].

Results: Performance and precision
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Compared to conventional and state-of-the-art place recognition systems, VPRTempo was trained and deployed
orders of magnitude faster. We did not trade-off precision, as we perform comparably to these methods.

Conclusions

* We present the first temporally encoded spiking neural network for visual place recognition.
* A real-time capable place recognition system, suitable for resource contrained platforms.

» Developed an accurate network with modular capabilities for large scale place recognition.
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