
Bringing the Robot Operating System to the Web
Tobias Fischer1, Isabel Paredes2,3, Michael Batchelor1, Thorsten Beier3, Jesse
Haviland1, Silvio Traversaro4, Wolf Vollprecht5, Markus Schmitz2 & Michael Milford1

Motivation
• ROS is the de facto standard middleware in robotics, but

platform support is very limited L è accessibility and
reproducibility challenges in industry, research & teaching!

• RoboStack alleviated some of these challenges by
facilitating installation across Linux, MacOS & Windows via
the Conda package manager:

conda install ros-humble-desktop
• What if we could design a solution that requires no

installation whatsoever and provides a standardised
execution platform?

Acknowledgements:

Applications: What does it do for you?
• Execute ROS 2 nodes in browser environments
• Same code across all devices: Mobile & Desktop
• Share complete ROS environments via web links!
• Communicate between ROS nodes within browsers

• Control of physical robots through web interfaces:
Demonstrations with LEGO BOOST Vernie

• Reproducible environments for education, research
papers, and collaboration

Key contributions
• Combine the RoboStack ecosystem with emscripten-forge

to streamline ROS package compilation for web targets

• Cross-compiled ROS 2 to WebAssembly, enabling
execution directly in web browsers
• Developed a custom ROS 2 middleware for browser

communications (rmw-wasm)

• Created www.ros2wasm.dev as a demonstration platform
• Extended support to Peter Corke’s Robotics Toolbox for

Python with Swift simulator adaptation

Future work
• Extension to ROS2 Actions, QoS, and Parameters
• Include graphical interfaces (RViz, Gazebo, MoveIt)

7. Concept Assessment 49

an LED color publisher appears. The user would have to connect to Vernie via bluetooth before
being able to send the commands to change LED color based on the last published message.

LEGO BOOST Vernie

CONNECT DISCONNECT

Publish LED colors

START STOP CLEAR

Initializing...
[INFO] [1682077173.551000000] [wasm_cpp]: Context initializing.
[INFO] [1682077174.584000000] [rainbow_publisher]: Publishing: ’pink’
[INFO] [1682077175.598000000] [rainbow_publisher]: Publishing: ’purple’
[INFO] [1682077176.614000000] [rainbow_publisher]: Publishing: ’blue’
[INFO] [1682077177.633000000] [rainbow_publisher]: Publishing: ’lightblue’
[INFO] [1682077178.652000000] [rainbow_publisher]: Publishing: ’cyan’
[INFO] [1682077179.574000000] [rainbow_publisher]: Publishing: ’green’
[INFO] [1682077180.591000000] [rainbow_publisher]: Publishing: ’yellow’
[INFO] [1682077181.607000000] [rainbow_publisher]: Publishing: ’orange’

Figure 7.10. Publisher sending LED colors to the Vernie robot.

To control the position of the Vernie robot, a publisher which sends geometry msgs/Twist
messages was created. These messages contain a linear and an angular vector to express the
velocity in free space. To ensure compatibility with lego-boost-browser, a few simplifications
were made. The Vernie robot can only move forward or backwards along the x-axis and rotate
on the same xy-plane, along the z-axis; thus, the only relevant values from the Twist message
are the linear velocity ẋlin and the angular velocity żrot. Since the commands sent to Vernie
with lego-boost-browser can only be expressed in terms of motor power (P), from 0 to 100%, the
linear and angular command velocities are converted with the following formula:

C
1 ≠1
1 1

D C
xlin

zrot

D

=
C
PA

PB

D

(7.1)

Afterwards, the motor power is normalized to ensure that it does not exceed the 100% limit.

With this implementation, a ROS publisher can send command velocities by publishing a Twist
message, then these messages are converted and forwarded to the Vernie robot to activate the
motors with the desired velocities.

4. Methodology 18

• Using AssemblyScript

• Targeting WebAssembly as output for Rust applications

• Using Emscripten for C/C++ applications

Since most ROS 2 packages are written in C/C++, the easiest solution was to use Emscripten.
Emscripten is a compiler toolchain which takes C/C++ source code and outputs a wasm module,
the JavaScript glue code and optionally a HyperText Markup Language (HTML) document, as
illustrated in Figure 4.1. In terms of ROS packages, for each executable, for example a talker.cpp

containing a publisher node, Emscripten will output three files per executable: talker.wasm,
talker.js and talker.html.

C/C++
source code

talker.cpp
Emscripten

wasm module
talker.wasm

HTML document
talker.html

JavaScript
glue code

talker.js

Figure 4.1. Transformation of C/C++ code to WebAssembly through Emscripten [Ste23].

In order to cross-compile the packages to WebAssembly, the Emscripten SDK (emsdk) version
3.1 was installed. The Emscripten toolchain was then provided to colcon as a cmake argument
(See Appendix C.1 Line 109).

4.3. Package Building Process

Before any packages could be built, all of the ROS 2 core packages were cloned in a local
workspace. To prevent compilation issues, packages related to the default middleware imple-
mentations were excluded by adding a COLCON IGNORE file in their respective root directories;
these include iceoryx, cyclonedds, fastrtps, and connextdds. A secondary purpose for excluding
these packages is to ensure that the custom middleware implementation is the only implemen-
tation available at runtime. This custom middleware implementation must also be included in
the current workspace before proceeding.

Additionally, a blasm script was created to aid in the building of packages given that the num-
ber of arguments quickly became exceedingly lengthy for manual input. The entire script is
included in Appendix C.1 for reference. With this script, it is possible to build any package
and its dependencies, or to build a package individually. Care must be taken to ensure that the

+

Background + Glossary
• WebAssembly (WASM): Binary executable format

designed for execution on modern web browsers
• Emscripten: Compiler toolchain to convert C/C++ code

into WebAssembly
• Conda: A language-agnostic, open-source package

management system and environment manager
• Emscripten-forge: A repository of conda packages build

using Emscripten

This research was partially supported by funding from ARC DECRA Fellowship DE240100149 to TF,
ARC Laureate Fellowship FL210100156 to MM, and the QUT Centre for Robotics.

LEGO Boost Vernie

7. Concept Assessment 49

an LED color publisher appears. The user would have to connect to Vernie via bluetooth before
being able to send the commands to change LED color based on the last published message.

LEGO BOOST Vernie

CONNECT DISCONNECT

Publish LED colors

START STOP CLEAR

Initializing...
[INFO] [1682077173.551000000] [wasm_cpp]: Context initializing.
[INFO] [1682077174.584000000] [rainbow_publisher]: Publishing: ’pink’
[INFO] [1682077175.598000000] [rainbow_publisher]: Publishing: ’purple’
[INFO] [1682077176.614000000] [rainbow_publisher]: Publishing: ’blue’
[INFO] [1682077177.633000000] [rainbow_publisher]: Publishing: ’lightblue’
[INFO] [1682077178.652000000] [rainbow_publisher]: Publishing: ’cyan’
[INFO] [1682077179.574000000] [rainbow_publisher]: Publishing: ’green’
[INFO] [1682077180.591000000] [rainbow_publisher]: Publishing: ’yellow’
[INFO] [1682077181.607000000] [rainbow_publisher]: Publishing: ’orange’

Figure 7.10. Publisher sending LED colors to the Vernie robot.

To control the position of the Vernie robot, a publisher which sends geometry msgs/Twist
messages was created. These messages contain a linear and an angular vector to express the
velocity in free space. To ensure compatibility with lego-boost-browser, a few simplifications
were made. The Vernie robot can only move forward or backwards along the x-axis and rotate
on the same xy-plane, along the z-axis; thus, the only relevant values from the Twist message
are the linear velocity ẋlin and the angular velocity żrot. Since the commands sent to Vernie
with lego-boost-browser can only be expressed in terms of motor power (P), from 0 to 100%, the
linear and angular command velocities are converted with the following formula:

C
1 ≠1
1 1

D C
xlin

zrot

D

=
C
PA

PB

D

(7.1)

Afterwards, the motor power is normalized to ensure that it does not exceed the 100% limit.

With this implementation, a ROS publisher can send command velocities by publishing a Twist
message, then these messages are converted and forwarded to the Vernie robot to activate the
motors with the desired velocities.

Fig. 8. Interface for controlling the LEGO BOOST Vernie robot using
a ROS publisher to send LED color commands. The user can connect or
disconnect from the robot via Bluetooth and use the interface to publish
different LED colors by starting or stopping the “rainbow” publisher. The
console logs below display the sequence of colors being published in real
time, illustrating the robot’s response to the published messages.

was achieved by passing messages via Python/Javascript
interoperability using PyJS. Second, we had to find an
alternative way to launch the Swift environment without
starting an HTTP server. We eliminated the HTTP server
by loading the web interface in an embedded iframe. Third,
we needed to add hooks to load Robotics Toolbox assets
from the packaged Python environment. This was achieved
by intercepting asset fetching so that assets could be retrieved
from the PyJS file system.

The resulting implementation demonstrates an approach
for adapting existing projects to work within Emscripten and
WASM constraints, which may inform future WebAssembly
ports. Users can now interact with the simulator through a
Python terminal embedded in a web page (Figure 7).

E. Communication with a non-ROS Robot

To showcase the wide range of possible applications of
ROS2WASM, we demonstrate the manipulation of a physical
robot. Data can be sent and received from a robot with the
publishers and subscribers developed in Section III-A, as long
as there is a communication bridge between the robot and the
web browser. There are two primary ways to communicate
with a robot: Firstly, configure a robot to launch a rosbridge
server to send information to the browser; however, this
method requires the robot to be running ROS for creating
a rosbridge. An alternative way for robots which do not
run ROS natively is to create a bridge between the browser
and the robot’s system. The bridge can be established via
Bluetooth, WiFi, or through a wired connection. Here, we
demonstrate ROS2WASM with the LEGO BOOST Vernie
robot that is connected to any computer via Bluetooth. A
pre-existing library, lego-boost-browser [28], is used to establish
the interface between ROS and Vernie via a Web Bluetooth
API.

The lego-boost-browser library can send commands to Vernie
to change the LED color or activate the two motors for
locomotion. We created a publisher that simply publishes
different LED colors as strings from Vernie’s acceptable list

of colors. When these messages reach the message stacks of
the respective topic, they are forwarded to the robot through
lego-boost-browser. Figure 8 shows how a web page running
an LED color publisher appears, displaying the user interface
with connect/disconnect buttons, publisher controls, and a
console that logs the sequence of colors being published in
real-time to demonstrate the robot’s response to commands.
To control the position of the Vernie robot, we created a
publisher that sends geometry msgs/Twist messages that contain
linear and angular velocity vectors to express the robot’s
velocity in free space.

IV. CONCLUSION

We demonstrated the feasibility and potential of running
ROS 2 within a web browser using WebAssembly. Our work
encompasses the design and implementation of three major
components: a custom middleware architecture, a method
for cross-compiling ROS 2 packages to WebAssembly, and
the deployment of a web-based platform that allows users
to interact with ROS environments directly in their browsers
without the need for local installation or configuration.

Our website, www.ros2wasm.dev, enables the public
to engage with a range of demonstrations that showcase
the capabilities of ROS2WASM. These demonstrations vary
in user interaction level and complexity, highlighting the
versatility and scalability of the platform. By successfully
running and facilitating communication between multiple
ROS nodes within the browser, we have validated the core
concept of ROS2WASM. This increased accessibility opens
up new possibilities for education, research, and collaboration
in robotics, making advanced tools more widely available. The
current platform allows easy sharing of these environments via
a simple link. However, further efforts are needed to simplify
the setup process for novice users, particularly in creating
and deploying their own ROS-based web applications.

ROS2WASM also has significant potential in industrial ap-
plications. Web-based ROS could enable robust server-based
distributed control systems for multi-agent coordination, al-
lowing operators to monitor and control robot fleets from any
device without specialized software installations. Additionally,
ROS2WASM could facilitate scalable and flexible cloud-based
robotic processing, where computationally intensive tasks can
be executed on remote servers while maintaining responsive
browser-based interfaces on local devices.

Looking ahead, future work could explore integrating
Zenoh as the middleware for ROS 2 [29]. Zenoh, a lightweight
communication protocol recently added as an official RMW
implementation for ROS 2, offers the potential to natively
support WebAssembly. This could eliminate the need for our
custom middleware, thereby streamlining the architecture and
further improving performance and compatibility.

Another promising direction is adapting packages that
contain graphical user interfaces such as the popular rviz,
Gazebo, and MoveIt for browser compatibility. Such adaptations
would further solidify the viability of running ROS 2 in the
browser, which could lead to even broader adoption and
innovation in web-based robotics.

Using
ROS 2

docs.ros.org
conda install ros-jazzy-desktop

robostack.github.io ros2wasm.dev

1 2 3 4 5

File Edit View Run Kernel Tabs Settings Help

Create publishers and subscribers
node = rclpy.create_node('minimal_publisher', context=context, use_global_arguments=False, start_parameter_services=True)
pub_a = node.create_publisher(String, 'topic_a', 10)
pub_b = node.create_publisher(String, 'topic_b', 10)
sub_1 = MinimalSubscriber('minimal_subscriber_test', ['topic_a', 'topic_b'])
sub_2 = MinimalSubscriber('minimal_subscriber_test_a', ['topic_b'])

Run publishers/subscribers

[2]: running = True
print("Running nodes for 5 seconds")
asyncio.create_task(publish_messages(pub_a, 'Hello From A '))
asyncio.create_task(publish_messages(pub_b, 'Hello From B '))
asyncio.create_task(spin_subscriber(sub_1))
asyncio.create_task(spin_subscriber(sub_2))

async def stopper():
 global running
 await asyncio.sleep(5)
 print("Stopping all tasks")
 running = False

asyncio.create_task(stopper())

Running nodes for 5 seconds
[2]: <Task pending name='Task-5' coro=<stopper() running at /tmp/x

python_42/1230654137.py:8>>
minimal_subscriber_test heard: "Hello From A 0"
minimal_subscriber_test heard: "Hello From B 0"
minimal_subscriber_test_a heard: "Hello From B 0"
minimal_subscriber_test_a heard: "Hello From B 1"
minimal_subscriber_test heard: "Hello From A 1"
minimal_subscriber_test heard: "Hello From B 1"

Code Python (XPython)

Launcher RosTest.ipynb

Simple 0 1 Python (XPython) | I… 0RosTest.ipy…Ln 50, C…Mode: Comm…

File Edit View Run Kernel Tabs Settings Help

Create publishers and subscribers
node = rclpy.create_node('minimal_publisher', context=context, use_global_arguments=False, start_parameter_services=True)
pub_a = node.create_publisher(String, 'topic_a', 10)
pub_b = node.create_publisher(String, 'topic_b', 10)
sub_1 = MinimalSubscriber('minimal_subscriber_test', ['topic_a', 'topic_b'])
sub_2 = MinimalSubscriber('minimal_subscriber_test_a', ['topic_b'])

Run publishers/subscribers

running = True
print("Running nodes for 5 seconds")
asyncio.create_task(publish_messages(pub_a, 'Hello From A '))
asyncio.create_task(publish_messages(pub_b, 'Hello From B '))
asyncio.create_task(spin_subscriber(sub_1))
asyncio.create_task(spin_subscriber(sub_2))

async def stopper():
 global running
 await asyncio.sleep(5)
 print("Stopping all tasks")
 running = False

asyncio.create_task(stopper())

Running nodes for 5 seconds
<Task pending name='Task-5' coro=<stopper() running at /tmp/x
python_42/1230654137.py:8>>
minimal_subscriber_test heard: "Hello From A 0"
minimal_subscriber_test heard: "Hello From B 0"
minimal_subscriber_test_a heard: "Hello From B 0"
minimal_subscriber_test_a heard: "Hello From B 1"
minimal_subscriber_test heard: "Hello From A 1"
minimal_subscriber_test heard: "Hello From B 1"

Code Python (XPython)

Launcher RosTest.ipynb

Simple 0 1 Python (XPython) | I… 0RosTest.ipy…Ln 50, C…Mode: Comm…

ROS2WASM: Bringing the Robot Operating System to the Web

Tobias Fischer1, Isabel Paredes2,3, Michael Batchelor1, Thorsten Beier2, Jesse Haviland1,
Silvio Traversaro4, Wolf Vollprecht5, Markus Schmitz3, and Michael Milford1

Abstract— The Robot Operating System (ROS) has become

the de facto standard middleware in robotics, widely adopted

across domains ranging from education to industrial applications.

The RoboStack distribution, a conda-based packaging system

for ROS, has extended ROS’s accessibility by facilitating

installation across all major operating systems and architectures,

integrating seamlessly with scientific tools such as PyTorch and

Open3D. This paper presents ROS2WASM, a novel integration

of RoboStack with WebAssembly, enabling the execution of

ROS 2 and its associated software directly within web browsers,

without requiring local installations. ROS2WASM significantly

enhances reproducibility and shareability of research, lowers

barriers to robotics education, and leverages WebAssembly’s

robust security framework to protect against malicious code. We

detail our methodology for cross-compiling ROS 2 packages into

WebAssembly, the development of a specialized middleware for

ROS 2 communication within browsers, and the implementation

of www.ros2wasm.dev, a web platform enabling users to interact

with ROS 2 environments. Additionally, we extend support

to the Robotics Toolbox for Python and adapt its Swift

simulator for browser compatibility. Our work paves the way

for unprecedented accessibility in robotics, offering scalable,

secure, and reproducible environments that have the potential

to transform educational and research paradigms.

I. INTRODUCTION

The Robot Operating System (ROS) has emerged as the
de facto standard robotics middleware, facilitating communi-
cation between multiple nodes in a network [1]. Its extensive
libraries and active community support have led to widespread
adoption across domains ranging from education to industrial
applications [2]. However, as the ROS user base expands,
issues related to the accessibility of ROS distributions have
surfaced. ROS2WASM addresses these concerns by bridging
the gap between high-performance scientific computing and
web-based applications, making advanced robotics tools more
accessible to a broader audience. To aid readers in navigating
the technical terms and concepts used throughout this paper,
a glossary is provided in Table I.

1TF, MB, JH and MM are with the QUT Centre for Robotics, School of
Electrical Engineering and Robotics, Queensland University of Technology,
Brisbane, QLD 4000, Australia (e-mail: {tobias.fischer, mj.batchelor, j.havl,
michael.milford}@qut.edu.au).

2IP and TB are with QuantStack, 16 Avenue Curti, 94100 Saint-Maur-des-
Fossés, France (e-mail: {isabel.paredes, thorsten.beier}@quantstack.net).

3IP and MS are with the Institute of Mechanism Theory, Machine Dynam-
ics and Robotics, RWTH Aachen, Germany (e-mail: schmitzm@igmr.rwth-
aachen.de).

4ST is with the Fondazione Istituto Italiano Di Tecnologia (Italian Institute
of Technology), Genova, Italy (e-mail: silvio@traversaro.it).

5WF is with prefix.dev, Französische Straße 12, 10117 Berlin, Germany
(e-mail: w.vollprecht@gmail.com).

This research was partially supported by funding from ARC DECRA
Fellowship DE240100149 to TF, ARC Laureate Fellowship FL210100156
to MM, and the QUT Centre for Robotics.

ROS 2 @ localhost
File Edit View Run Kernel Tabs Settings Help

Create publishers and subscribers
node = rclpy.create_node('minimal_publisher', context=context, use_global_arguments=False, start_parameter_services=True)
pub_a = node.create_publisher(String, 'topic_a', 10)
pub_b = node.create_publisher(String, 'topic_b', 10)
sub_1 = MinimalSubscriber('minimal_subscriber_test', ['topic_a', 'topic_b'])
sub_2 = MinimalSubscriber('minimal_subscriber_test_a', ['topic_b'])

Run publishers/subscribers

running = True
print("Running nodes for 5 seconds")
asyncio.create_task(publish_messages(pub_a, 'Hello From A '))
asyncio.create_task(publish_messages(pub_b, 'Hello From B '))
asyncio.create_task(spin_subscriber(sub_1))
asyncio.create_task(spin_subscriber(sub_2))

async def stopper():
 global running
 await asyncio.sleep(5)
 print("Stopping all tasks")
 running = False

asyncio.create_task(stopper())

Running nodes for 5 seconds
<Task pending name='Task-5' coro=<stopper() running at /tmp/x
python_42/1230654137.py:8>>
minimal_subscriber_test heard: "Hello From A 0"
minimal_subscriber_test heard: "Hello From B 0"
minimal_subscriber_test_a heard: "Hello From B 0"
minimal_subscriber_test_a heard: "Hello From B 1"
minimal_subscriber_test heard: "Hello From A 1"
minimal_subscriber_test heard: "Hello From B 1"

Code Python (XPython)

Launcher RosTest.ipynb

Simple 0 1 Python (XPython) | I… 0RosTest.ipy…Ln 50, C…Mode: Comm…

Fig. 1. Execution of a ROS 2 publisher and subscriber setup within a
Jupyter Notebook environment running entirely in the browser, with no
local installation required (www.ros2wasm.dev). The notebook creates
publishers for topics topic a and topic b, as well as two minimal
subscribers listening to these topics. The log output at the bottom shows the
concurrent execution of these nodes, with messages being published and
received, verifying seamless communication between ROS 2 nodes directly
within the browser-based interface.

ROS 2 has made significant strides by enabling native instal-
lations on major platforms, including Ubuntu, Windows, and
macOS. The RoboStack effort has further extended ROS 2’s
reach by allowing installations within conda environments [3].
Nevertheless, variations in package versions across platforms
can complicate the replication of workspaces, posing chal-
lenges for both educational and research applications [4].

Replicating workspaces is particularly beneficial in scenar-
ios such as teaching robotics courses [5] and reproducing
research papers [6]. Instructors often struggle to provide
students with the necessary tools, resorting to maintaining a
computer lab or providing instructions for workplace repli-
cation. However, students’ diverse computing environments
can lead to inconsistencies in how ROS packages function
due to differences in operating systems, library versions, and
system configurations. ROS2WASM mitigates these issues
by providing a standardized execution environment within

