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Method: Back-Tracing for Path Planning & Place Disambiguation
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Experimental Results
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1. Reduced threshold of target population (M)
— Inhibition of simultaneously active populations (M)

2. Back-tracing of information through backwards threshold update (STDTA)
— Inhibition of alt. paths (C-D-E-G-I-J), selection of shortest path (C-F-H-J)

1. Case: Binary disambiguation (Envs. 1, 2)
— Populations with lower number of active neurons spike earlier (ADTA)

2. Case: Multiple ambiguities (Envs. 1, 2, 3)

— Discrimination between ambiguities: adjust ambiguity rate A,

= Shortest path calculation in 3 (max. L, shortest path length) replays = Place disambiguation between multiple places with varying ambiguity
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