

Robin Dietrich^{1,2}, Tobias Fischer², Nicolai Waniek³, Nico Reeb^{1,2}, Michael Milford², Alois Knoll¹, Adam Hines²

¹School of Computation, Information and Technology, Technical University of Munich, Munich, Germany. ²QUT Centre for Robotics, School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, Australia. ³Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway.

Introduction					
Activity Back-Tracing in SNNs Shortest Path Target	Motivation Training of Spiking Networks challenging 	Network Archited	ture for BT in S-HTM	Background: S-HTM	
	\rightarrow no backwards information, not differentiable \rightarrow backpropagation only using approximations	Input <u>Stimulus</u> → Replay	I. Replay - BI $A \rightarrow B C \bigcirc G$ $A \rightarrow B D \stackrel{=}{=} E - F - G$	• Spiking hierarchical temporal memory (S-HTM) [3] \rightarrow Sequence prediction, mismatch det., and replay	
$D \longrightarrow E \longrightarrow F$ Alternative Path	 Classic graph algorithms use back-tracing of information for, e.g., path planning 	Excitatory Subpopulations activated path 1		\rightarrow Sequences: excitatory con., e.g., $\mathcal{M}_A \rightarrow \mathcal{M}_B$	
Back-Tracing	 SNNs for graph computations 	connections> path 2 inhibited connections path 2	\mathcal{M}_{G} \mathcal{M}_{B}	• Population encoding for locations (M_{t})	

 $[A] \xrightarrow{B} (C) \xrightarrow{G} (G)$ \rightarrow require additional learning rules [1] or backwards connections [2] \rightarrow rely on single neuron representation for location [1, 2]

- Parallel replay of all sequences from start location
- Path/Place selection through global inhibition, triggered by threshold adaptation during replay

Method: Back-Tracing for Path Planning & Place Disambiguation

SHORTEST PATH FINDING

1. Manual target selection (prior Replay 2) \rightarrow Reduce threshold $\theta_{\mathcal{M}_{\Phi}}$ of target pop. (\mathcal{M}_{Φ}):

 $\theta_{\mathcal{M}_{\Phi}}(r_0) = \theta_{\mathcal{M}_{\Phi}}(r_0) \cdot \lambda_{\Phi}, \text{ target rate } \lambda_{\Phi}$

2. **Back-tracing rule** (Replay $2 \rightarrow 3$) \rightarrow Spike timing-dependent threshold adaptation (STDTA) for each $l \in \{A, B, C, ...\}$:

 $\theta_{\mathcal{M}_l}(r) = \theta_{\mathcal{M}_l}(r-1) \cdot \lambda_b$, back-tracing rate λ_b

PLACE DISAMBIGUATION

1. Neuronal populations encode ambiguity \rightarrow Population \mathcal{M}_l represents multiple contexts \rightarrow # active neurons (replay) \propto ambiguity of place 2. Target selection by ambiguity (Replay 1) \rightarrow Ambiguity dep. threshold adaptation (ADTA): $\theta_{\mathcal{M}_{I}}(r) = \theta_{\mathcal{M}_{I}}(r) \cdot e^{\gamma(F_{a}-F_{\rho})} \cdot \lambda_{a}$, with

active (F_a) and targeted (F_{ρ}) # neurons per context, slope of in-/decrease (γ) and ambiguity rate (λ_a)

Experimental Results

SHORTEST PATH FINDING

 \Rightarrow Back-tracing in SNNs without connection modifications not yet studied

- 1. Reduced threshold of target population (\mathcal{M}_J)
 - \rightarrow Inhibition of simultaneously active populations (\mathcal{M}_G)
- 2. Back-tracing of information through backwards threshold update (STDTA)
 - \rightarrow Inhibition of alt. paths (C-D-E-G-I-J), selection of shortest path (C-F-H-J)

PLACE DISAMBIGUATION

- 1. Case: Binary disambiguation (Envs. 1, 2)
- \rightarrow Populations with lower number of active neurons spike earlier (ADTA)
- 2. Case: Multiple ambiguities (Envs. 1, 2, 3)
 - \rightarrow Discrimination between ambiguities: adjust ambiguity rate λ_a

Conclusion	Limitations & Outlook		
. Shortest path finding in SNNs with back-tracing \rightarrow Threshold adaptation (STDTA) during replay enables information back-tracing with local learning rule \rightarrow Shortest path found in $\leq L$ (path length) replays 2. Place disambiguation for localization improvement	 Current limitations Path length is limited by max. threshold adaptation Ambiguity discrimination requires parameter adjustment 	 Towards real-time neuro-robotic navigation Integration of real-world sensor data processing with multi- column structure for robotic application Neuromorphic implementation (Loihi 2) for real-time evaluation 	
\rightarrow Ambiguity representation with population code	Acknowledgements	References	
\rightarrow Discrimination of places with varying ambiguity us- ing ADTA \rightarrow Path planning to selected place with low ambiguity	This research was partially supported by funding from ARC DECRA Fellowship DE24010014 and an ARC Laureate Fellowship FL210100156 to MM. The authors acknowledge continued s from the Queensland University of Technology (QUT) through the Centre for Robotics. This has been supported by a fellowship of the German Academic Exchange Service (DAAD) and FFG, Contract No. 881844: "Pro ² Future".	 9 to TF Support s work by the [1] Filip J. Ponulak et al. "Rapid, Parallel Path Planning by Propagating Wavefronts of Spiking Neural Activity". In: <i>Frontiers in Computational Neuroscience</i> 7 (July 2013). [2] Catherine D. Schuman et al. "Shortest Path and Neighborhood Subgraph Extraction on a Spiking Memristive Neuromorphic Implementation". In: <i>Proceedings of the 7th Annual Neuro-inspired Computational Elements Workshop</i>. NICE '19. New York, NY, USA: Association for Computing Machinery, Mar. 2019, pp. 1–6. [3] Younes Bouhadjar et al. "Sequence learning, prediction, and replay in networks of spiking neurons". en. In: <i>PLOS Computational Biology</i> 18.6 (June 2022). 	