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Motivation
• Training of Spiking Networks challenging
→ no backwards information, not differentiable
→ backpropagation only using approximations

• Classic graph algorithms use back-tracing of
information for, e.g., path planning

• SNNs for graph computations
→ require additional learning rules [1] or
backwards connections [2]
→ rely on single neuron representation for
location [1, 2]

⇒ Back-tracing in SNNs without connection modifications not yet studied
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Background: S-HTM
• Spiking hierarchical temporal memory (S-HTM) [3]
→ Sequence prediction, mismatch det., and replay
→ Sequences: excitatory con., e.g., MA →MB

Approach: Network for Back-Tracing with Replay
• Population encoding for locations (Ml)
• Parallel replay of all sequences from start location
• Path/Place selection through global inhibition,

triggered by threshold adaptation during replay

Method: Back-Tracing for Path Planning & Place Disambiguation

SHORTEST PATH FINDING

1. Manual target selection (prior Replay 2)
→ Reduce threshold θMΦ

of target pop. (MΦ):

θMΦ
(r0) = θMΦ

(r0) ·λΦ, target rate λΦ

2. Back-tracing rule (Replay 2 → 3)
→ Spike timing-dependent threshold adapta-
tion (STDTA) for each l ∈ {A,B,C, ...}:

θMl(r) = θMl(r−1) ·λb, back-tracing rate λb
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PLACE DISAMBIGUATION

1. Neuronal populations encode ambiguity
→ Population Ml represents multiple contexts
→ # active neurons (replay) ∝ ambiguity of place

2. Target selection by ambiguity (Replay 1)
→ Ambiguity dep. threshold adaptation (ADTA):

θMl(r) = θMl(r) · e
γ(Fa−Fρ) ·λa, with

active (Fa) and targeted (Fρ) # neurons per context,
slope of in-/decrease (γ) and ambiguity rate (λa)

Experimental Results
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Back-tracing Procedure
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1. Reduced threshold of target population (MJ)
→ Inhibition of simultaneously active populations (MG)

2. Back-tracing of information through backwards threshold update (STDTA)
→ Inhibition of alt. paths (C-D-E-G-I-J), selection of shortest path (C-F-H-J)

⇒ Shortest path calculation in 3 (max. L, shortest path length) replays

PLACE DISAMBIGUATION
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1. Case: Binary disambiguation (Envs. 1, 2)
→ Populations with lower number of active neurons spike earlier (ADTA)

2. Case: Multiple ambiguities (Envs. 1, 2, 3)
→ Discrimination between ambiguities: adjust ambiguity rate λa

⇒ Place disambiguation between multiple places with varying ambiguity

Conclusion

1. Shortest path finding in SNNs with back-tracing
→ Threshold adaptation (STDTA) during replay enables
information back-tracing with local learning rule
→ Shortest path found in ≤ L (path length) replays

2. Place disambiguation for localization improvement
→ Ambiguity representation with population code
→ Discrimination of places with varying ambiguity us-
ing ADTA
→ Path planning to selected place with low ambiguity

Limitations & Outlook

Current limitations
• Path length is limited by max. threshold adaptation
• Ambiguity discrimination requires parameter ad-

justment

Towards real-time neuro-robotic navigation
• Integration of real-world sensor data processing with multi-

column structure for robotic application
• Neuromorphic implementation (Loihi 2) for real-time evaluation
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