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A B S T R A C T

Humans are inherently social beings that benefit from their perceptional ca-
pability to embody another point of view. This thesis examines this capabil-
ity, termed perspective taking, using a mixed forward/reverse engineering
approach. While previous approaches were limited to known, artificial envi-
ronments, the proposed approach results in a perceptional framework that
can be used in unconstrained environments while at the same time detailing
the mechanisms that humans use to infer the world’s characteristics from
another viewpoint.

First, the thesis explores a forward engineering approach by outlining the
required perceptional components and implementing these components on
a humanoid iCub robot. Prior to and during the perspective taking, the iCub
learns the environment and recognizes its constituent objects before approxi-
mating the gaze of surrounding humans based on their head poses. Inspired
by psychological studies, two separate mechanisms for the two types of per-
spective taking are employed, one based on line-of-sight tracing and another
based on the mental rotation of the environment.

Acknowledging that human head pose is only a rough indication of a
human’s viewpoint, the thesis introduces a novel, automated approach for
ground truth eye gaze annotation. This approach is used to collect a new
dataset, which covers a wide range of camera-subject distances, head poses,
and gazes. A novel gaze estimation method trained on this dataset outper-
forms previous methods in close distance scenarios, while going beyond pre-
vious methods and also allowing eye gaze estimation in large camera-subject
distances that are commonly encountered in human-robot interactions.

Finally, the thesis proposes a computational model as an instantiation of
a reverse engineering approach, with the aim of understanding the under-
lying mechanisms of perspective taking in humans. The model contains a
set of forward models as building blocks, and an attentional component to
reduce the model’s response times. The model is crucial in explaining hu-
man data in congruency matching experiments and suggests that humans
implement a similar attentional mechanism. Several testable predictions are
put forward, including the prediction that forced early responses lead to
an egocentric bias. Experimental results on the computational formalization
of perspective taking also open up future possibilities of exploring links to
other perceptional and cognitive mechanisms, such as active vision and au-
tobiographical memories.
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1
I N T R O D U C T I O N

In our everyday lives, we often interact with other people. Although each
interaction is different and hard to predict in advance, they are usually
fluid and efficient. This is because humans take many aspects into account
when interacting with each other: the relationship between the interlocutors,
their familiarity with the topic, and the time and location of the interac-
tion, among many others. More specifically, humans are remarkably good
at rapidly forming models of others and adapting their actions accordingly.
To form these models, humans exploit the ability to take on someone else’s
point of view.

One particular capability of humans addressed in this thesis is perspective
taking (PT), which is defined here as the ability to assume another per-
son’s visuospatial viewpoint. For example, humans often point out an ob-
ject to another person if that person needs to change their point of view
to perceive it. To do so, humans need to estimate the visibility of objects
from another viewpoint (this is referred to as level one perspective tak-
ing, PT1). Similarly, we often provide relative spatial references from the
other’s perspective, e. g. “Could you please pass me the red ball on your
left?” (known as level two perspective taking, PT2). These PT abilities are
frequently employed in human-human interactions, with examples being
joint assembly (Trafton, Schultz, Bugajska and Mintz, 2005) and collabora-
tive wayfinding (Schwarzkopf et al., 2017), to name just two. PT therefore
constitutes an essential ability in our lives and is a requirement for other fun-
damental abilities such as a theory of mind (Premack and Woodruff, 1978;
Surtees et al., 2013b).

As robots are becoming part of human society, and humans prefer to
interact with robots in the same way as they interact with other humans
(Fong et al., 2003), this thesis examines PT abilities in robots. This has previ-
ously been shown to be crucial, as it allows robots to interact more naturally
(Breazeal et al., 2006; Johnson and Demiris, 2005a), is required for success-
ful cooperation (Trafton, Cassimatis, Bugajska, Brock, Mintz and Schultz,
2005), eases communication (Pandey et al., 2013) and resolves ambiguities in
human-robot interactions, for instance where some objects can only be seen
by one agent but not the other (Lemaignan et al., 2017).
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18 introduction

The thesis endeavors to study PT using both forward and reverse engi-
neering approaches. The forward engineering approach is instantiated as an
artificial visual system that equips robots with PT abilities in human-robot
interactions. The reverse engineering approach is instantiated as a compu-
tational model whose properties are inspired and compared to those of the
human visual system. Studying PT in this bidirectional manner can uncover
some of the problems inherent in the human visual system, while at the same
time applying principles that have emerged from the study of the human
visual system to its artificial counterpart. Both approaches are introduced
below.

The artificial visual system presented in this thesis provides robots with
PT abilities that work in environments that are not equipped with artifi-
cial markers without the need for prior knowledge. This is in contrast to
previous PT solutions, which were only effective in constrained, artificial en-
vironments. It is shown that PT coupled with gaze estimation can be used
within a software framework designed for human-robot interactions (HRIs).
As large camera-subject distances are commonly encountered in HRI envi-
ronments, a new gaze estimation method is introduced and validated in HRI
settings.

To contribute to the discussion on the underlying mechanisms of PT in the
human visual system, a computational model is presented that validates one
of the accounts suggested in psychology, namely the embodied transforma-
tion account. The embodied transformation account suggests that humans
employ the same body representations for physical movements and PT, with
the difference being whether the movements are executed or imagined (fur-
ther details are provided in Section 2.5). The computational model suggests
that humans employ an attentional mechanism for PT and provides several
testable predictions that can be verified in future psychological studies. The
model is implemented on a simulated iCub robot to allow for a wide breadth
of experiments with several dozens of replications per experiment.

The focus on the PT ability is grounded on the firm belief that PT itself
is a requirement for natural human-human and human-robot interaction,
and a pre-requisite for the development of other skills, such as a theory of
mind (Premack and Woodruff, 1978), intention prediction (Demiris, 2007),
and imitation learning (Meltzoff, 2005).
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1.1 research questions

To summarize, the thesis aims to address the following research questions:

• How can a robot be equipped with PT abilities in markerless environ-
ments?

• How can a PT system be integrated into a cognitive architecture for
HRIs?

• How can a robot accurately estimate the gaze direction of a human,
taking both head pose and eye gaze into account, and can such mech-
anisms be learned from data?

• How can PT be modeled from a computational point of view, and
how do the model’s outputs compare to data from experiments with
humans?

1.2 contributions

The work presented in this thesis provides the following contributions:

• It introduces the design and implementation of an artificial visual sys-
tem that is capable of solving visuospatial PT tasks in markerless
scenarios. Implementing two different mechanisms, one for each level
of PT, allows a robot to reason about the spatial relationships of other
agents and objects in the vicinity. This is in line with evidence from
the field of experimental psychology, as will be further discussed in
Section 2.4. The reasoning is done solely based on the images captured
by the robot’s eye cameras and an RGB-D camera mounted on top of
the robot, without the need for any external sensors. The system was
implemented on an iCub humanoid robot and performs visuospatial
PT in real-time.

• It introduces iCub-HRI, a library for HRIs that provides the iCub robot
with components related to perception, object manipulation, and so-
cial interaction. Since the library is modular and easily extendable, the
PT system is integrated within the iCub-HRI library.

• It describes the design of a gaze estimation method that significantly
improves the accuracy of the PT system by taking not only the head
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pose, but also the eye pose into account. The gaze estimator is imple-
mented using Convolutional Neural Networks (CNNs) that take the
eye images and head pose as input.

• It proposes a novel, automated dataset collection method which ad-
dresses the problem that CNNs typically require large amounts of
training data. The novel method allows labeled data to be collected in
an automated manner as the subjects wear eyetracking glasses while
being recorded. The method was used to collect a challenging dataset
that is particularly suited for HRIs. This is in stark contrast to previous
datasets that typically use fixation targets to annotate the gaze direc-
tion or approximate the gaze direction by the head pose. The method
prevents the CNNs from being over-fitted to users wearing eyetrack-
ing glasses by using an image inpainting method based on Gener-
ative Adversarial Networks to remove the eyetracking glasses from
the training images. The CNNs trained with the new dataset can be
applied in a wide variety of scenarios as demonstrated in cross-dataset
evaluations.

• It proposes a novel computational model instantiating the embodied
transformation account which suggests that PT is the mental simu-
lation of the physical movements that would be required to take the
other perspective. The foundation of the proposed model is a set of
action primitives that are passed through a forward model that pre-
dicts the next position given a movement. The key finding is that
the model’s responses only match those of humans if an attentional
component is employed, one that favors the execution of previously
employed action primitives. This allows for several predictions to be
put forward for future psychological studies on PT.

Appendix C lists and describes the publications derived from this thesis.

1.3 thesis roadmap

As shown in Figure 1.1, the thesis is organized over seven chapters followed
by three appendices:

• Chapter 2 provides background that is relevant for the developments
reported in the thesis. Specifically, it reports on previous approaches
on PT within robotics, it introduces works on appearance-based gaze
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Figure 1.1: Thesis roadmap1. Each box indicates one chapter and the symbols indi-
cate the relationship between the chapters.

estimation, and it provides an overview of computational modeling
approaches.

• Chapter 3 describes an artificial visual system that equips an iCub hu-
manoid robot with the ability to perform visuospatial perspective tak-
ing in unknown environments using a single depth camera mounted
above the robot, i. e. without using a motion capture system or fiducial
markers. The gaze of the human is approximated using a new method
for head pose estimation that relies on the depth data.

• Chapter 4 shows the integration of the artificial visual system intro-
duced in Chapter 3 within a cognitive architecture for the iCub to en-
gage in a proactive, mixed-initiative exploration and manipulation of
its environment.

• Chapter 5 extends the system introduced in Chapter 3 by taking the
human’s eye gaze into consideration (rather than approximating the

1 The symbols contained in this figure were created by Tomas Knopp, David Carrero, Cre-
ative Stall, Irene Hoffman, Nikita Kozin, Ven Design, Artdabana@Design and Atif Ar-
shad. They are released under the CC BY 3.0 license and are available for download on
https://thenounproject.com/.

https://creativecommons.org/licenses/by/3.0/
https://thenounproject.com/
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gaze with the head pose as in Chapter 3). To reach this goal, the chapter
introduces an architecture that allows automatic annotation of ground
truth in gaze datasets. The architecture is then used to collect a new
gaze dataset, and this dataset is employed to train a deep network for
gaze estimation.

• Chapter 6 investigates possible implementations of perspective taking
in the human visual system using a computational model applied to
a simulated robot. The model proposes that a mental rotation of the
self, also termed “embodied transformation”, accounts for this ability.
The computational model reproduces the reaction times of human sub-
jects in several experiments and explains gender differences that were
observed in human subjects.

• Finally, Chapter 7 summarizes this thesis and draws conclusions based
on the findings of the work reported here. The chapter highlights the
importance of the research along with its limitations and discusses
potential directions for future research on topics covered within this
thesis.

• Appendix A describes the robots, components, and sensors that were
used to implement the system.

• Appendix B provides details on the Generative Adversarial Networks
that were used for the inpainting of the eyetracking glasses in Chap-
ter 5.

• Appendix C contains a list of all peer-reviewed publications that re-
sulted from the thesis and a summary of how they contribute to the
thesis.

This chapter introduced the perspective taking ability that is investigated
within this thesis, outlined research questions to be addressed and summa-
rized the contributions that are provided. The next chapter will provide a
detailed review of related works.



2
B A C K G R O U N D

Various research fields inspired this thesis, including robotics, computer vi-
sion, computational modeling, and psychology. The purpose of this chapter
is to review articles from these fields that are relevant to later chapters of the
thesis.

The chapter is organized as follows. In Section 2.1, the issue of advanced
visual perception abilities in robotics is discussed, with a particular empha-
sis on works that investigate perspective taking (PT) in robotics. There, it is
argued that PT is a requirement for natural human-robot interaction (HRI).
Section 2.2 then introduces works that embed these perception abilities into
cognitive architectures for robotics. These architectures go beyond just per-
ception and also contain components for social interactions and manipula-
tion, and importantly their integration. Then, Section 2.3 probes the issue of
estimating humans’ gaze given images. It is argued that there is a research
gap that needs to be bridged: combining head pose and eye gaze in HRIs
with large camera-subject distances. Section 2.4 then moves the presentation
to PT in humans. The distinction of level 1 and 2 PT is probed and presented
along with typical experimental setups to investigate PT in humans. Sec-
tion 2.5 presents an analysis of the mechanisms underlying PT. It is argued
that the embodied transformation account constitutes a theory that is well
supported and can be validated using computational modeling. Grounded
on this finding, Section 2.6 introduces articles that present computational
models of cognitive abilities, with an emphasis on articles that computation-
ally model PT. This is followed by an overview of forward/reverse engineer-
ing approaches for other tasks in Section 2.7. Finally, Section 2.8 summarizes
the chapter.

2.1 perspective taking in robotics

This section reviews works on visual perception in robotics. A particular fo-
cus is given to works that implement aspects of PT relevant to the work pre-
sented in this thesis. The topic of joint attention, which is often considered to
be a prerequisite for PT, was previously discussed by Moore et al. (2014) in
human-human interactions and Nagai et al. (2003) as well as Demiris (2007)

23
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in the robotics domain. In brief, joint attention allows the involved agents
to focus on a common object, and this object then becomes subject of the
PT process. Therefore, as further detailed by Moll and Meltzoff (2011b, who
consider joint attention as level 0 PT), joint attention and perspective taking
are closely linked.

2.1.1 Perspective Taking for Resolving Ambiguous Situations

One of the earliest works on PT for HRI is that of Trafton, Cassimatis, Buga-
jska, Brock, Mintz and Schultz (2005). Their robot can handle ambiguous sit-
uations where level one perspective taking (PT1) is needed; in other words,
situations where the robot can see two similar objects, but one of them is
occluded from the human. Kennedy et al. (2009) extend this work and show
that a “like-me” simulation can solve some level two perspective taking (PT2)
abilities. In a like-me simulation, the robot’s reasoning capabilities from its
own point of view are applied to the imagined situation of the human. Ros
et al. (2010) take this idea further and resolve ambiguities by also taking
an ontology of objects into account. This ontology is then used in an “I spy
with my little eye” game where the robot’s task is to find the correct object
by asking the human partner questions.

2.1.2 Perspective Taking for Language Understanding

Roy et al. (2004) use a like-me simulation similar to that of Kennedy et al.
(2009), but specifically target language understanding and production. Steels
and Loetzsch (2009) take this idea further and present a method that allows
two robots to learn a common language to describe spatial concepts. This is
implemented by a turn-taking strategy whereby one of the robots describes
the spatial layout of a scene to the other robot.

Lemaignan et al. (2011) and Warnier et al. (2012) extend the work by Ros
et al. (2010) and integrate it with a language understanding component.
While the main contribution of Lemaignan et al. (2011) is the parsing of
a speech input into a symbolic representation, Warnier et al. (2012) add a
temporal component that allows taking the perspective of a human based
on previous as well as current object positions.

Hughes et al. (2016) and Wood et al. (2018) explore a different research
direction and argue that a robot can be used to teach PT skills to autistic
children. This is unusual in the sense that the robot is not the learner, as
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is the case in most other works presented in this section, but instead the
teacher.

2.1.3 Perspective Taking for Imitation Learning

Breazeal et al. (2006) use ambiguous situations in a learning scenario for hu-
manoid robots. Their robot retains two sets of beliefs, one is for the self and
one is for the other’s perspective. By representing these sets probabilistically,
the robot can understand the human’s intent even if the demonstration is
not complete, e. g. because some objects are occluded, and thus the human
does not perform an action on these objects.

Similarly, Johnson and Demiris (2007) have shown that retaining a sepa-
rate set of beliefs for the other’s perspective can also be used to model dy-
namic environments. More specifically, the self predicts the effect of actions
on the visual perception of the other, which is taken into account when imi-
tating the other. This also allows the self to adapt to changing environments
where the applicability of actions changes over time, for example when a
third person moves objects.

2.1.4 Perspective Taking for Mental State Estimation

Johnson and Demiris (2005b) have conducted a study where an internal sim-
ulation of possible motor commands is used to gain insight into the mental
state of another robot, rather than that of a human. Their robot determines
the applicability of models from the other’s perspective using a list of cou-
pled inverse and forward models1. That is, the probabilities of models which
cannot be applied by the other robot are reduced. One possible application
of this work is in increasing the accuracy of action recognition (Johnson and
Demiris, 2005a).

Winfield (2018) demonstrate that such simulation-based approaches can
model a variety of experiments, ranging from imitation to narrative story-
telling. Akkaladevi et al. (2016) and Devin and Alami (2016) have shown
that estimating mental states of humans can be used to find the most ap-
propriate manipulation of objects while taking the human’s preferences into
account.

1 A forward model predicts the next state given the current state and an action. An inverse
model takes the current state and desired states as input, and outputs the required action to
reach this desired state.
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2.1.5 Perspective Taking for Task Understanding

Pandey et al. (2013) focus on human-robot interactions and teach a robot
what it means to make an object visible or accessible. This needs PT abili-
ties as the reachability of an object has to be determined from the other’s
perspective. One of the key contributions is that their robot can detect the
effort of a human to reach an object, from “no effort needed” to “whole body
effort”. While Pandey et al. (2013) focus on close distance scenarios, Sisbot
et al. (2007) use similar concepts in a path planning scenario and argue that
the robot should take the human’s path and preferences into account.

For other similar works, the reader is referred to a recent review on the
importance of PT in HRIs by Lemaignan et al. (2017). This review argues
that one of the most important reasons for the need for PT in robots is that
humans frequently change perspectives when describing locations.

2.1.6 Limitations of Previous Works

The previously mentioned works all demonstrate the importance and impact
of PT in robotics and more specifically HRI. However, as the environment
in these works is highly constrained, these works do not meet the outlined
objective of HRI in natural scenarios. Pandey et al. (2013); Ros et al. (2010);
Warnier et al. (2012) and Lemaignan et al. (2011, 2017) use motion capture
systems to detect humans and objects. While this provides accurate location
information, motion capture systems are expensive and need precise calibra-
tion. Also, as the environment must be known in advance, the applicability
of these systems is limited.

The object detection of Trafton, Cassimatis, Bugajska, Brock, Mintz and
Schultz (2005) and Kennedy et al. (2009) relies on color blob segmentation,
and thus can only detect a small number of objects, which have to be uni-
formly colored. Furthermore, their system only takes the human’s body di-
rection into account, but not the eye gaze of humans. Johnson and Demiris
(2005a, 2007) rely on optical markers to compute the poses of the target robot
and objects. Chapter 3 presents algorithms to overcome these constraints and
introduces a framework that applies to natural environments.

2.2 human-robot interaction architectures for robotics

Having shown the importance of equipping robots with PT abilities, the
discussion now moves to architectures tailored towards HRIs. The focus is
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on architectures that allow the integration of various components, including
those for perception and action, with the aim of providing a platform for
HRI studies.

First, the concept of a robotics middleware is introduced. A middleware
serves multiple purposes. It provides a means of convenient communication
between distributed components, whereby one component might be respon-
sible for object detection, another one for perspective taking, yet another for
grasping and so forth. Middleware also often provides interfaces for sensors
such as cameras and motor encoders. In their review article, Elkady and
Sobh (2012) provide an excellent overview of robotics middleware.

Appendices A.1 and A.2 introduce the Robot Operating System (ROS) and
Yet Another Robot Platform (YARP) middleware as they have been used
heavily in this thesis. The low-level control of the iCub relies on the YARP
middleware, while ROS has been used for implementation of most compo-
nents presented within this thesis and is being adopted rapidly by more and
more researchers.

Indeed, several works are introducing HRI related frameworks based on
ROS. For example, Jang et al. (2015) propose a framework where modules
concerned with low-level control and service logic are separated from mod-
ules concerned with social behaviors. Lane et al. (2012) present a bundle
of ROS modules which allows the extension of existing projects for speech
recognition, natural language understanding, and basic gesture recognition
as well as gaze tracking. Krupke et al. (2017) present a toolkit which allows
the evaluation of human-robot interactions in virtual reality environments
and subsequent deployment on a real robot. The robot behavior toolkit
(Huang and Mutlu, 2012) is based on findings within the social sciences to
allow for more natural robot behavior. Finally, Sarabia et al. (2011) present a
framework allowing the perception of the actions and intentions of humans
and show its application in a social context where a robot imitates the dance
movements of a human.

2.3 perceiving human eye gaze

This section first highlights the importance of taking the human’s eye gaze
into account, followed by an overview of gaze estimation techniques within
computer vision.
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2.3.1 Importance of Eye Gaze

There is a wide range of works supporting the importance of eye gaze within
human-human and human-robot interactions. One of the earliest reports on
the importance of eye gaze in social interactions between humans is that by
Kendon (1967) who argues that gaze serves as a regulating signal indicating
when the speaker and listener change roles. Kennedy et al. (2015) show ex-
perimentally that the head pose should not be used as a proxy for eye gaze
when measuring the attention of children in children-adult interactions.

Boucher et al. (2012) investigate the influence of gaze on action recogni-
tion and have shown that response times are impaired when the eyes of the
person performing the action are occluded. However, the gaze is not only
being directed at the other person but also at the object that is manipulated.
Falck-Ytter et al. (2006) have shown that this is the case even for infants
(12-month-olds).

Admoni and Scassellati (2017) show that not only the human’s gaze di-
rection is of importance, but also the robot’s gaze. They provide guidelines
regarding the question of where the robot should direct its gaze during HRI.

2.3.2 Gaze Approximation Approaches

Before moving the discussion onto gaze estimation methods that take both
head and eye pose into account, some compelling works on the approxima-
tion of gaze in other ways are presented.

Chamveha et al. (2013) suggest using the walking direction of a human
as a very rough approximation of the gaze direction in low-resolution and
far distance scenarios. While this estimate is somewhat accurate in outdoor
scenes, it fails to take head pose or eye gaze into account and does not
provide gaze estimates for humans that are static.

Mukherjee and Robertson (2015) fuse two separate networks for the RGB
and depth modalities. However, as the inputs are low-resolution images, the
eye pose is not taken into account. Their main contribution is a probabilistic
attention metric that allows both gaze estimation and interaction detection
by modeling a spatial probability distribution of the gaze. If the attention of
one person is focused on the other person’s head and vice versa, these two
people are assumed to be interacting.

Recasens et al. (2015) present a method that allows 2D gaze following in
images. Their primary motivation is that objects are a strong indicator of
where people tend to look, and their Convolutional Neural Network (CNN)
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therefore consists of a gaze pathway and a saliency pathway. Park et al. (2013)
take a similar approach, where the group members in a social scene are
considered to be salient. While these saliency-based approaches work well
in many situations, they are limited as gaze does not always fall on the most
salient objects.

2.3.3 Appearance-Based Gaze Estimation Approaches

Funes-Mora and Odobez (2016) propose a gaze estimation method applied
to RGB-D images. The idea is to fit a morphable face model to an image, and
then estimate the gaze from the fitted parameters. However, the performance
is affected if no person-specific face model is available. The method is also
constrained to scenarios where the subjects are facing towards the camera
and are within a close distance.

In recent years, Zhang et al. (2015) have shown that deep learning meth-
ods such as CNNs can be used to find the mapping between the eye image
and the corresponding gaze angle. Their method relies on a single eye im-
age as input. Cheng et al. (2018) have shown that it is beneficial to estimate
which eye image (left/right eye image) results in better gaze estimation per-
formance (rather than randomly choosing the eye), and then use this eye
image to train a gaze estimator. In these methods, the head angle is not es-
timated by the CNN, but instead appended to one of the fully connected
layers.

Krafka et al. (2016) have shown that using a CNN also to estimate the
head angle is beneficial. Their CNN estimates the gaze by combining the left
eye, right eye and face images, along with a face grid which provides the
network with information about the location and size of the head within the
original image. Zhang et al. (2017) take this idea further and show that the
gaze direction can be directly estimated from the face image by learning a
distribution that encodes the importance of the facial areas. In other words,
their CNN learns that the eye region is most important for gaze estimation
itself rather than explicitly providing the eye region as separate input.

An alternative approach has recently been proposed by Park et al. (2018),
who introduce an intermediate “pictorial” representation rather than di-
rectly regressing the gaze from an eye image. The pictorial representation
consists of iris and eyeball maps, and a lightweight CNN with relatively few
parameters is trained to regress the gaze from the pictorial representation.

The reviewed methods are limited as they can only capture the gaze on
a phone, tablet or laptop, rather than in a free-viewing environment. Ac-
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cording to Lu et al. (2015), this is partly due to the training images, which
typically contain images of subjects that face a screen. In free-viewing set-
tings, head motion changes the eye appearance drastically, and thus meth-
ods that are trained with images from screen-based settings fail to generalize
for wide head pose ranges. This prevents these methods from being used in
free-viewing scenarios that are targeted in Chapter 5 of this thesis. For this
reason, the following section introduces the most common approaches to
collecting eye gaze datasets.

2.3.4 Dataset Collection Approaches

As manual labeling of the gaze is a tedious task, most gaze datasets are
captured with the subject looking at pre-defined targets on a screen. In the
Columbia Gaze dataset (Smith et al., 2013), the subjects are recorded with
their head placed on a chin rest and asked to fixate on a dot displayed on a
wall. This leads to severely limited appearances: the camera-subject distance
is kept constant, and there are only a small number of possible head poses
and gaze angles. The UT Multi-view dataset (Sugano et al., 2014) contains
recordings of subjects with multiple cameras, which makes it possible to
synthesize additional training images using virtual cameras and a 3D face
model. Deng and Zhu (2017) propose a similar setup, where extreme head
pose angles are contained by first displaying a head pose target, followed by
an eye gaze target.

Zhang et al. (2015) present the MPII Gaze dataset where target items are
displayed on a laptop screen in home environments at different times of
the day, which increases the variations in appearance. Eyediap (Funes Mora
et al., 2014) contains not only gaze targets on a computer screen, but also a
3D floating target which is tracked using color and depth information. The
dataset with the largest number of subjects may be GazeCapture (Krafka
et al., 2016). It is a crowd-sourced dataset of nearly 1500 subjects looking at
gaze targets on a tablet screen. Huang et al. (2017) have taken a very similar
approach and present the TabletGaze dataset.

A feature that all of these datasets have in common is that the head pose
is estimated using landmark positions of the subject and a generic or subject-
specific 3D head model. While these datasets are highly useful when a sub-
ject is directly facing a screen or mobile device, the camera-subject distance
is relatively small, and the head pose is biased towards the screen. In com-
parison, datasets that favor highly accurate head pose estimation at larger
distances typically do not contain eye gaze labels (Baltrusaitis et al., 2012;



2.3 perceiving human eye gaze 31

Fanelli et al., 2013; Fisher, 2004; Mukherjee and Robertson, 2015). Some of
these limitations are overcome by the proposed algorithms to automatically
annotate the gaze as presented in Section 5.2.

Another way of obtaining annotated gaze data is by creating synthetic
image patches (Lu et al., 2015; Wood et al., 2016, 2015). For example, Wood
et al. (2016) propose a method to render photo-realistic images of the eye
region. This has the advantage that arbitrary head poses and gazes can be
created. However, the synthetic images do not look the same as real images,
and thus a domain gap exists. Shrivastava et al. (2017) propose the use of
Generative Adversarial Networks to refine the synthetic patches to resemble
more realistic images while ensuring that the gaze direction is not affected.

2.3.5 Gaze Estimation for Robotics

Several works investigate gaze detection for application in robotics. Schilling-
mann and Nagai (2015) enable an iCub humanoid robot to detect a partner’s
gaze by combining head and eye features. The head pose is determined by
finding landmark positions of the face and mapping them to a 3D face model
(see Section 5.5 for more details). The pupil position is determined based on
the contrast of the white region around the pupil and the pupil itself. How-
ever, the method is constrained to people who sit approximately one meter
from the robot. Palinko et al. (2015) present a calibration-free method for
gaze tracking. Their method is similar to that of Schillingmann and Nagai
(2015); however the focus of their work is in tracking the gaze to find the
object the human is attending to. Furthermore, by detecting when the hu-
man is looking straight at the robot, their robot can benefit from turn-taking
behavior.

2.3.6 Gaze Estimation for Other Applications

Within this thesis, gaze estimation is used as a component within a PT frame-
work. However, there is a wide range of other applications. Kar and Corco-
ran (2017) recently provided a thorough review, and thus the presentation
here is limited to a few works. Parks et al. (2015) show that gaze estimation
can be used to improve the fixation estimates in an eyetracking study. Thirty
subjects were asked to view images containing at least one face on a com-
puter screen. Combining the gaze estimates with saliency information signif-
icantly outperforms the individual models only focusing on gaze or saliency.
Koutras and Maragos (2015) have applied Gaussian Mixture Models to sign
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language videos. There, the gaze plays a significant role in detecting the
change of prosody. Müller et al. (2018) present a method to detect eye con-
tact in social interactions using both gaze and speaking behavior. Their setup
relies on two cameras behind each participant so that every other participant
can be seen from each participant’s viewpoint. Vasudevan et al. (2018) ex-
ploit that humans gaze at objects they describe to increase the performance
within the object referring task (localizing the target object in videos given a
language description).

2.4 perspective taking in humans

The discussion now moves towards PT in humans. This section summarizes
findings from psychology that are generally agreed upon, and briefly dis-
cusses some neurophysiological studies.

It is well documented that humans rely on two different levels of PT,
which are task-specific and are likely to have different underlying mecha-
nisms (Flavell et al., 1981; Michelon and Zacks, 2006). For both levels, we
distinguish the visual and spatial dimension.

2.4.1 Level 1 Perspective Taking

PT1 emerges in children at around two years of age (Moll and Tomasello,
2006) and comprises the ability to identify objects which are occluded from
one perspective but not the other (visual dimension), as well as the ability
to infer whether an object is in front of or behind the other agent (spatial
dimension). Yaniv and Shatz (1990) and Michelon and Zacks (2006) have
suggested that this is achieved by tracing a line-of-sight between the other
agent and the target object.

Experimentally, PT1 is frequently investigated using tasks where the per-
spective taker views a scene of another human that is facing a wall (Qureshi
et al., 2010; Ramsey et al., 2013; Todd et al., 2017). The most straightforward
task is to decide whether a dot can be seen by the other human (which is
the case if the object is drawn on the wall in front of the human) or if it is
occluded (object is located on the wall behind the human). This task can be
extended in various ways, for example by asking the perspective taker how
many objects can be seen by the other human. For PT1, Michelon and Zacks
(2006) have shown that the response time increases linearly with the distance
between the other human and the target object.
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2.4.2 Level 2 Perspective Taking

PT2 is developing between three and five years of age (Moll and Meltzoff,
2011a) and refers to understanding how the object is perceived from the other
perspective (rather than just understanding what is visible from that perspec-
tive; Michelon and Zacks, 2006).

Experimentally, one way to investigate PT2 is as follows. The perspective
taker is viewing a scene containing another human situated around a table.
Various objects are located on the table, and the perspective taker’s task is
to decide whether the target object is to the left or the right as perceived
by the other human (spatial dimension, see Kessler and Rutherford, 2010

and Kessler and Wang, 2012). This experimental setup is particularly easy to
replicate and has thus been used in Chapter 6. An example of visual PT2 is
estimating how a numeral appears from the perspective of another human
(Surtees et al., 2013b).

The “own-body transformation” task (Blanke et al., 2005) should also be
mentioned, where the perspective taker has to decide whether the indicated
hand of a human is the left or right hand. However, as this thesis focuses on
multi-person interactions, this approach is not detailed further.

For PT2, some form of mental rotation seems to be employed. The precise
mechanisms are still under debate and are discussed in the next section.

2.5 on the mechanisms of perspective taking

This section introduces several accounts on the mechanisms of PT. As re-
viewed in Section 2.4.1, it is now well accepted that line-of-sight tracing
underlies PT1. However, there is extensive debate whether PT1 is automatic
(i. e. involuntarily/spontaneous), and the arguments in favor and against
this proposal are discussed. This is followed by the presentation of two ri-
valing proposals for mechanisms underlying PT2, namely the sensorimotor
interference and embodied transformation accounts.

2.5.1 Automatic Perspective Taking

Schurz et al. (2015) and Surtees et al. (2016) report that subjects automatically
take the perspective of others’ even when it is not required for the given task.
Schurz et al. (2015) employ the object counting experimental paradigm in-
troduced in Section 2.4.1 and show that the subjects’ reaction time increases
if the other human sees a different number of objects. While Schurz et al.
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(2015) employ a PT1 task, Surtees et al. (2016) and Elekes et al. (2017) argue
that participants automatically take the perspective of others in a PT2 task,
but only if the subject is actively collaborating with others.

This view is currently under debate. Cole et al. (2016) modify the stimuli
such that the avatar cannot see any objects in some trials. These trials show
the same effect on the response times, and hence it is argued that subjects
do not automatically take others’ perspectives in PT1 tasks. The same effect
is shown by Santiesteban et al. (2017) who replace the other human with
an arrow in a PT2 task. In this case, the effect on response times does not
change either, which provides evidence against automatic PT2.

2.5.2 Experimental Paradigms Investigating Automatic Perspective Taking

While the following two studies (Qureshi et al., 2010 and Todd et al., 2017)
were conducted to contribute towards the discussion on automatic PT, they
are mentioned here because of their interesting experimental paradigms,
namely execution of a secondary task (Qureshi et al., 2010) and forced early
responses (Todd et al., 2017). The forced early response paradigm is further
investigated in Chapter 6.

Qureshi et al. (2010) have introduced a study on PT1 while executing a sec-
ondary task. The primary task was a PT1 task, while the secondary task was
responding to an auditory stimulus. Qureshi et al. reported that the simulta-
neous execution of the secondary task overall increases the processing cost
(i. e. increased reaction times), but more so when there is an inconsistency
between perspectives. This led to the conclusion that the executive processes
are only involved in the perspective selection (between the self and the other
perspective), but not in the actual perspective calculation. In other words, the
other’s perspective is still (automatically) calculated despite the additional
task.

Todd et al. (2017) have shown the same effect in a study where subjects
were forced to give an early response. It was shown that this does not affect
the automatic processing of the avatar’s perspective, but the controlled (task-
related) processing, which in this study was to report on the self-perspective
in inconsistent trials. In other words, an early forced response leads to dis-
ruption of the correct perspective selection. Section 6.5 discusses the pre-
sented computational model’s predictions when an early response is forced
in a PT2 task.
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2.5.3 Mechanisms Underlying Level 2 Perspective Taking

There is extensive debate about the mechanisms involved in level two per-
spective taking (Alsmith et al., 2017; Kessler and Thomson, 2010; May, 2004;
Surtees et al., 2013b). While in general a mental self-rotation seems to be em-
ployed, Kessler and Thomson (2010) and Janczyk (2013) argued that a mental
self-rotation is only invoked at angular disparities between the perspective
taker and the other human that are larger than 60 degrees. For smaller an-
gular disparities, they suggest that a visual matching process is invoked.
Similarly, if the perspective taker is located directly opposite the other hu-
man, Gardner et al. (2013) propose that left and right are simply swapped.
Vander Heyden et al. (2017) have shown that children indeed employ this
strategy.

Concerning the mental self-rotation, various mechanisms have been pro-
posed. The two most prominent ones are the sensorimotor interference ac-
count (May, 2004) and the embodied transformation account (Kessler and
Thomson, 2010). There is particular emphasis on the embodied transforma-
tion account as the computational model presented in Chapter 6 is based on
this account.

The sensorimotor interference account suggests that mental rotations are
difficult due to the conflicts of spatial information that emerge when a simu-
lated perspective is taken (May, 2004). More specifically, May (2004) suggests
that objects have to be represented from the self-perspective as well as the
other’s perspective. For instance, when selecting the correct response in the
left-right task as introduced in Section 2.4.2, the two representations com-
pete with each other. When additional reference frames, such as the body
frame and head frame, are taken into account, the sensorimotor interference
account postulates that these introduce additional sources of interference.

The embodied transformation account states that humans employ egocen-
tric encoding when taking others’ perspectives, i. e. they mentally rotate the
self into the target posture (Kessler and Rutherford, 2010). This process uses
the body representations of the self and the corresponding forward model.
In other words, the body representations used for PT are the same as the
ones used for actual physical movement of the body, whereby physical move-
ments are being executed and perspective taking emerges as an emulation
of movement. It is not required to estimate the other’s forward model, as the
direction of alignment is from the self to the other (rather than vice versa).

Surtees et al. (2013a) have shown that the embodied transformation ac-
count is valid for both visual and spatial PT2 tasks. As a reminder, an ex-
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ample of a visual PT2 task is estimating how a numeral appears like from
the other’s perspective, while an example of a spatial PT2 task is judging
whether an object is to the left or right of the other. Finally, besides the evi-
dence from psychological studies (Kessler and Thomson, 2010; Surtees et al.,
2013b; Watanabe, 2016), Wang et al. (2016) and Gooding-Williams et al. (2017)
present neurophysiological data that provides further support for the em-
bodied transformation account. These studies suggest that a specific brain
area, namely the right posterior temporoparietal junction, implements the
transformation into another perspective. The interested reader is referred to
Bukowski (2018) for a recent review of the neural correlates that underpin
PT.

2.6 computational modeling of perspective taking

The discussion now moves to previous attempts at modeling perspective
taking and related cognitive abilities. Schrodt et al. (2015) introduce a model
that first learns to correlate visual and proprioceptive data of motion se-
quences. The motion patterns are assumed to be observed from four view-
points, i. e. egocentric, left, right, and opposite viewpoints. The perspective
invariance is achieved by minimizing the error between the observed motion
and the closest of the motion observations at training time. However, perceiv-
ing motion (including proprioceptive information) from multiple viewpoints
during training time is not a realistic assumption as proprioceptive informa-
tion is only available from the self-perspective. Furthermore, as the input
to the model are motion signals, merely observing others’ static postures is
not sufficient for perspective taking, which is contrary to human perspective
taking abilities.

Ogata et al. (2009) introduced a similar model for the prediction and imi-
tation of motion sequences. In the first step, the model learns a mapping be-
tween self-motions and movements of an object. It is assumed that a teacher
imitates the robot from four different viewpoints (as in Schrodt et al., 2015,
they use the egocentric, left, right, and opposite viewpoints). The model
then learns “conversion modules” that transform the input so that the for-
ward model trained from the egocentric perspective can be used to predict
the other’s motion. Finally, the model learns to select the conversion mod-
ule that most accurately predicts the motion of the other, which also allows
the imitation of the teacher. Nakajo et al. (2015) extend this work (Ogata
et al., 2009) by separately representing the viewpoints and motion sequences,
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which allows imitation of known actions from a viewpoint that has not been
observed previously.

Gentili et al. (2015) follow a similar approach, with a focus on the imi-
tation of another person observed from an arbitrary viewpoint. The visual
input is transformed to match the self-perspective using a concatenation of
rotation matrices. Subsequently, actions can be recognized and imitated us-
ing self-learned inverse models. Lopes and Santos-Victor (2005) use a similar
approach to mimic the arm movements of a human.

Recently, Duran and Dale (2016) proposed a computational model where
an agent considers multiple perspectives at any given time. Contextual cues,
as well as processing constraints, are employed to determine the currently
“salient” perspective in a probabilistic manner. Using contextual cues is an
appealing approach as this allows the modeling of individual differences
when taking others’ perspectives. Despite the modular nature of this ap-
proach, it severely depends on rather ad-hoc assumptions about the training
sequence. For example, all observations are assumed to be egocentric, fol-
lowed by introducing other-centric training samples, and finally samples
of virtual agents. Furthermore, it is not clear how the approach scales to a
larger number of object and agent locations (currently, there are four discrete
locations for the object and agent).

2.7 forward/reverse engineering approaches in other tasks

The forward/reverse engineering approach that is taken in this thesis has
been used to study several other tasks besides PT. This section presents four
prominent examples, namely imitation learning, simultaneous localization
and mapping, object and face recognition, and visual attention. Cox and
Dean (2014) provide an excellent review that contains further examples of
forward/reverse engineering approaches, with a focus on the interplay be-
tween neuroscience and computer science.

2.7.1 Imitation Learning

Demiris and Hayes (2002) propose an architecture for the imitation of move-
ments. Their architecture consists of two routes: one where the motor system
is only involved when reproducing the posture that is to be imitated (pas-
sive route), and another where the motor system is also involved in the per-
ception of the posture (active route). They suggest that the passive route is
particularly well suited for learning new movements. On the other hand, the
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active route is better suited for imitating already known movements because
the next posture can be predicted. They show that the combination of both
routes shares properties with the data observed from studies with monkeys.
Based on the model properties, Demiris and Hayes (2002) propose that the
neurons involved in the imitation are only then active if the demonstrator’s
movement is performed at speeds attainable by the monkey.

2.7.2 Simultaneous Localization and Mapping

Milford and Wyeth (2008) show that a computational model of the hippocam-
pus of rats can be used for Simultaneous Localization and Mapping. From
an engineering perspective, their model is compelling as it allows large-scale
mapping over a relatively long time frame. They found that in order to deal
with ambiguous visual inputs, it is advantageous to evaluate several compet-
ing hypotheses simultaneously. Hence, so-called grid cells were introduced
within their model. Later, Milford et al. (2010) showed that the rat’s brain
indeed has similar cells for reducing sensory uncertainty.

2.7.3 Object and Face Recognition

David Cox and coworkers study object and face recognition in biological and
artificial visual systems. In one line of work, they investigate the responses
of the visual system in the human brain when stimulated with various ob-
jects (Cox et al., 2004). They argue that contextual cues increase the object
recognition performance immensely. In another line of work, these findings
are then applied in an object recognition task (Pinto et al., 2008). This work
shows that a computational model that implements processes similar to the
primary visual cortex in primates perform favorably against state-of-the-art
methods in a range of datasets. Interestingly, however, the same model fails
to perform well in evaluations that use simple synthetic images. DiCarlo
and Cox (2007) argue that one reason for this is that the human brain is
optimized towards transforming the visual input into representations that
can be used by relatively simple decision functions – rather than applying
complex decision functions on “non-optimized” representations.
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2.7.4 Visual Attention

An impressive example of the forward/reverse engineering approach is the
Selective Tuning model by Tsotsos et al. (1995). Selective Tuning represents
an artificial visual system that goes beyond visual perception and also ad-
dresses the question of how control should be implemented to maximize the
information that is acquired at the next fixation. Tsotsos (1990) argues that
the biological visual system has to perform approximations, as even “simple
tasks” such as visual search are computationally intractable. Selective Tun-
ing matches primate data in a variety of tasks and offers a wide range of
testable predictions. For example, Rothenstein and Tsotsos (2014) show that
the firing rate of neurons in several layers of the visual hierarchy matches
that of the primate visual system. They argue that the neural modulation
should first occur in higher layers of the visual system, rather than the lower
layers, as is proposed in most other models (such as Desimone and Dun-
can, 1995; Reynolds et al., 1999; Reynolds and Heeger, 2009). For a thorough
discussion, the reader is referred to Tsotsos (2011).

2.8 conclusions

This chapter presented empirical and theoretical works that investigate PT.
It was demonstrated that PT is an important component for HRI. This thesis
introduces an approach to expand the applicability of PT in robotics be-
yond constrained, known environments that rely on artificial equipment, as
is required by the majority of prior works. The chapter also highlighted the
importance of eye gaze and argued that it had been omitted in many cases
due to the challenges encountered by large camera-subject distances.

Since one of the aims of this thesis is to model human PT, the discussion
then moved to works investigating PT in humans from psychological and
neurophysiological perspectives. The most prevalent works were introduced,
and it was argued that the embodied transformation account is well suited
for the implementation of a computational model, which could potentially
shed light on the underlying mechanisms of this theory.

Previous computational models of PT were subsequently introduced, but
it was found that PT is often achieved by considering multiple viewpoints
simultaneously at training time, which is not a realistic requirement for em-
bodied agents. Finally, works that follow a similar forward/reverse engi-
neering approach for other tasks were presented, and it was argued that
they advanced their respective fields considerably.
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Further background is contained within the following chapters, where a
more specific conceptualization for the addressed research challenges is nec-
essary. The following chapter starts by introducing the required components
of a robotic system that allows PT in natural environments. Inspired by the
reviewed literature, line-of-sight tracing was implemented for PT1, and a
mental rotation process is employed for PT2.



3
A L G O R I T H M S A N D S O F T WA R E F O R P E R S P E C T I V E
TA K I N G I N M A R K E R L E S S E N V I R O N M E N T S

This chapter addresses the first research question:

“How can a robot be equipped with perspective taking abilities
in markerless environments?”

This chapter shows that it is feasible to equip robots with perceptional abil-
ities for perspective taking (PT) in markerless environments using only the
robot’s cameras and an RGB-D camera. Several perception algorithms are
in place, whose outputs are used by two separate PT mechanisms to solve
level 1 and level 2 perspective taking tasks. Figure 3.1 illustrates an overview
of the proposed method. The iCub humanoid is used as a robotic platform
(see Appendix A.3).

The robot’s perception is split into three algorithms. Firstly, a state-of-
the-art visual Simultaneous Localization and Mapping (SLAM) algorithm
(Labbé and Michaud, 2018) is used to map the environment, so no prior in-
formation of the environment needs to be known. Secondly, a deep learning-
based algorithm is employed for real-time object recognition (Pasquale et al.,
2015), such that no markers are needed. Thirdly, a new head pose estima-
tion algorithm is proposed to approximate the gaze of the human. For this,
a state-of-the-art method based on random regression forests (Fanelli et al.,
2013) is extended using normalized depth images, which results in the in-
creased robustness of the algorithm. Section 3.1 details the three different
algorithms.

Grounded in the psychological studies introduced in Chapters 1 and 2

(Flavell et al., 1981; Michelon and Zacks, 2006), PT is separated into two
processes. Section 3.2 describes the implementation of a line-of-sight tracing
algorithm for level one perspective taking (PT1), and Section 3.3 introduces a
mental rotation algorithm for level two perspective taking (PT2). Section 3.4
evaluates this perspective pipeline with several experiments. Finally, Sec-
tion 3.5 summarizes and concludes this chapter.

41
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Figure 3.1: Overall flow of the proposed method1. The inputs to the perspective tak-
ing pipeline are images acquired from an RGB-D camera and the iCub
eyes. In the first step, the robot recognizes objects, estimates the head
pose of surrounding humans, and maps the environment. Two separate
processes are employed for PT1 and PT2; allowing the robot to infer
which objects are seen by the human, what the spatial location of these
objects are in the reference frame of the human, and how the world ap-
pears from the human viewpoint.

Research from this chapter has been previously published in Fischer and
Demiris (2016) and contributed to Moulin-Frier, Fischer et al. (2018), as well
as Zambelli et al. (2016).

1 The figure of the iCub was originally taken by Xavier Caré (https://commons.wikimedia.
org/wiki/File:ICub_Innorobo_Lyon_2014_debout.JPG, licensed under the CC BY-SA 3.0
license) and was modified to remove the background. The photo of the RGB-D camera was
taken by Pierre Lecourt and is under the CC BY-NC-SA 2.0 license (originally from https:
//flic.kr/p/e52Lxq). The modified figure is available under the CC BY-NC-SA 4.0 license
(with kind authorization from Xavier Caré to use this license).

https://commons.wikimedia.org/wiki/File:ICub_Innorobo_Lyon_2014_debout.JPG
https://commons.wikimedia.org/wiki/File:ICub_Innorobo_Lyon_2014_debout.JPG
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/2.0/
https://flic.kr/p/e52Lxq
https://flic.kr/p/e52Lxq
https://creativecommons.org/licenses/by-nc-sa/4.0/
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3.1 markerless perception of the environment

As discussed in Section 2.1.6, previous works are constrained to environ-
ments equipped with markers. The goal here is to estimate the perceived
world of humans and the surroundings of the robot, whilst not constraining
the environment. To this end, only cameras mounted on the robot are used,
namely the iCub eye cameras as well as a low-cost RGB-D camera.

The cloud points pC
k ∈ PC represent the point cloud PC acquired by the

RGB-D camera. The superscript C denotes that the cloud points are ex-
pressed in the reference frame FC of the RGB-D camera.

Let ΩR = {(ωR
1 , c1), . . . , (ωR

N, cN)} be a set of objects. Then, ωR
i ∈ R3

denotes the object location in the robot coordinate frame FR, N is the total
number of objects perceived by the robot, and ci contains the corresponding
object class to object i.

The set HC = {hC
1 , . . . , hC

M} contains the head poses hC
j ∈ R6 of the M

humans interacting with the robot. Each hC
j contains the position of the jth

head in the RGB-D camera coordinate frame, and the corresponding head
orientation in yaw, pitch, and roll notation.

The elements oij of matrix O with size N×M store the perception of ob-

ject i by agent j. Each oij ∈ O is a 3-tuple (ω
Hj
i ,S

Hj
i ,L

Hj
i ), where ω

Hj
i is the

ith object in reference frame FHj of the jth human, S
Hj
i ∈ {visible, occluded}

describes whether the ith object is in sight of the jth human, and similarly

L
Hj
i ∈ {left, central, right} encodes the spatial location, i. e. whether an object

is left, central or right as seen from the human perspective.
The following convention was used with regards to the coordinate frames.

Positive values on 1) the x-axis point forwards, 2) the y-axis point to the left,
and 3) the z-axis point upwards (see Figure 3.2). Distances are described in
meters and angles in degrees.

3.1.1 Environment Mapping

Real-Time Appearance-Based Mapping (RTAB-Map; Labbé and Michaud,
2018) was chosen to map the environment, as it has two advantages over
typical visual SLAM methods. Firstly, RTAB-Map can meet real-time con-
straints even for large maps, which is vital to allow robots to operate in com-
plex environments. Secondly, RTAB-Map not only makes use of the RGB-D
images but optionally also of the odometry and laser information provided
by the mobile base of the iCub. This sensor fusion ability prevents the loss
of odometry in the case of fast camera movements.
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Figure 3.2: Typical setup with the iCub humanoid robot, a human interacting with
the robot, and various objects placed between them. Some of the objects
are occluded to the human. The figure also shows the different coordi-
nate frames used in this chapter.

Section 3.3.1 (visual PT2) shows that the mapped environment can be used
to approximate the view of humans interacting with the robot. However,
the environment mapping is optional for PT1 (Section 3.2), and spatial PT2

(Section 3.3.2).
The algorithm runs online and takes the most recently captured point

cloud PC(t = tnow) as input. A Bayesian filter is used to determine whether
the current location has been visited before, which increases robustness on
long mapping sessions. Optionally, laser scans and the estimated odometry
of the wheels can be provided, which allows the algorithm to recover when
two consecutive point clouds do not have enough visual words in common.

The output of the algorithm is the 3D space ΠC in the reference frame
of the RGB-D camera. ΠC contains the concatenated point clouds PC(t =

t0), . . . , PC(t = tnow), after taking the robot movements into account and
removing duplicate points. Figure 3.3 shows the resulting point cloud after
moving the mobile base of the iCub in a typical lab environment.

3.1.2 Object Recognition

The object recognition pipeline is based on the recent work by Pasquale
et al. (2015) where a deep learning framework is ported to the iCub robot.
The framework allows learning and classifying objects online with one shot
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Figure 3.3: Map of the environment after turning the iCub 360 degrees on the spot
in a lab environment (view from above). The robot uses this information
to reason about parts of the environment that cannot be perceived at the
moment but have been seen previously.

learning. The input is the camera image of the left iCub eye camera, and
blobs that represent objects are extracted based on the luminosity of the
image. For each object, a vector representation of the image is computed
using the output of the highest layer of the deep convolutional network.
This representation is somewhat invariant to changes in scale, lightness, and
orientation. The classification to one of the object classes is done using a
support vector machine.

Once the object class is known, the stereo vision system (Fanello et al.,
2014) of the iCub is used to estimate the object location in the reference
frame FI of the left iCub eye. Superquadric models are used to estimate the
size and pose of objects (Vezzani et al., 2017). Then, using the robot kinemat-
ics the transformation TI→R to the robot root reference frame FR is computed,
and the setΩR is filled. Finally, the OpenCV object tracker (Kalal et al., 2012)
is used to track the objects even if the robot or the human manipulate them.

3.1.3 Head Pose Estimation

Accurate and robust estimation of the head poses HC of surrounding hu-
mans is crucial to take their perspective. If a head pose is not accurately
estimated, the robot’s judgments regarding the perception of the humans
might be incorrect. While Chapter 5 introduces a method for eye gaze esti-
mation, within this chapter, the head pose is used as an approximation of
the gaze.
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Previous works (Lemaignan et al., 2017; Pandey and Alami, 2010; Pandey
et al., 2013) tackled the head pose estimation using motion capture systems.
These provide accurate estimates but have the disadvantage that humans
need to wear a helmet (or similar) equipped with markers, which might par-
tially occlude the field of view and require a precise calibration. In contrast,
the presented approach is based on camera images, which does not require
humans to wear additional equipment but comes at the cost of information
with increased noise.

3.1.3.1 Camera-Based Head Pose Estimation

Recent advancements in the area of computer vision allow the estimation
of head poses using a single depth image acquired by an RGB-D camera
in real-time (Fanelli et al., 2013). On the dataset of the authors, the position
error is around 12± 23mm, and the error of the angles around 5.9± 8.1◦. The
algorithm is based on discriminative random regression forests. The forest
contains many trees, and the trees are learned in a way that within each
node of the tree the variance of the head pose is reduced. The output of the
forest is the mean of the predictions of the individual trees. The trees also
classify whether a patch given as input belongs to a head, which increases
robustness when noisy depth data acquired by the RGB-D camera is used
as input. If that is the case, the output of the tree is considered for the mean
calculation.

A user-specific 3D morphable model is needed to train the forest. The
ground truth data is generated using an iterative closest point algorithm.
Fanelli et al. (2013) capture a dataset of 20 people for the training of the
random forest. The subjects were sitting at a distance of 1 meter straight
in front of the camera. Note that no user-specific model is required for the
testing phase.

3.1.3.2 Method for Normalizing Depth Data

The algorithm works well on the testing set of the dataset. However, the in-
puts to the algorithm in the human-robot interactions investigated in this
chapter differ largely from that of the dataset of Fanelli et al. (2013). The
camera is not straight in front of the human, but comes with a large transla-
tional offset in the z-direction and rotation by an angle θ around the z-axis.
Furthermore, the distance between the camera and the human(s) is larger
than one meter. Section 3.4.3 shows that these factors severely decrease the
accuracy of the algorithm.
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In the proposed approach, rather than building a new training set match-
ing a specific environment, the depth image is normalized so that the face
position matches with the ones in the training images. This leads to a perfor-
mance similar to that of the testing set even if the human is located far away
from the training position. Note that this normalization is independent of
the presented PT system, and performance improvements are expected for
any application where the setup largely differs from that used by Fanelli
et al. (2013).

This improvement is achieved by transforming the point cloud PC into a
new reference frame FAj , resulting in the transformed point cloud PAj =

TC→AjP
C. The origin of frame FAj is chosen to be one meter away from

the head position hR
j ∈ R3, and the rotation of the coordinate axes of FAj

coincide with that of the robot frame FR. Therefore, FAj represents a virtual
camera frame that ensures that the subject’s pose in this frame is similar to
the poses contained in the training dataset of Fanelli et al. (2013).

To achieve this goal, the head position hC
j ∈ R3 obtained by the RGB-D

skeleton tracking2 (note that the skeleton information only includes the head
position, but not orientation), is first transformed into the robot frame FR:
hR
j = TC→RhC

j . Then, the transformation matrix TC→Aj is derived as follows3:

TC→Aj = TC→RTR→Aj = TC→R


1 0 0 hR

j,x − 1.0

0 1 0 hR
j,y

0 0 1 hR
j,z

0 0 0 1

 . (3.1)

Given TC→Aj , the transformed point cloud PAj can be obtained. This is used
as input to the pre-trained random forest by Fanelli et al. (2013), which
outputs the head pose h

Aj
j ∈ R

6 (with the first three elements being a re-
fined position estimate and the last three elements being the head rotation
in yaw, pitch, and roll notation) in the aligned reference frame FAj . Finally,
the refined head position h

Aj
j is transformed back into the initial frame of

reference FC as follows4:

hC
j = TC→Aj

−1h
Aj
j ∀j ∈ {1, . . . ,M}. (3.2)

The performance improvement using the described extensions to the orig-
inal head pose estimation algorithm is crucial for a markerless PT pipeline.
Figure 3.4 illustrates the normalization step, and Section 3.4.3 describes the
experimental results.

2 PrimeSense NiTE (http://www.openni.ru/) is used for skeleton tracking
3 TC→R is derived in Equation (3.3)
4 The notation is abused as only the translational components are transformed

http://www.openni.ru/
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Figure 3.4: Impact of the depth image normalization. The non-normalized input on
the left differs largely from the training data, as the camera is mounted
on an angle and too far from the subject. The normalized image after
transformation on the right is more similar to the training data (subject
is facing straight and is closer), which improves the performance of the
head pose estimator as shown in Section 3.4.3.

3.1.4 Transform RGB-D Camera Frame to Robot Frame

The transformation TC→R from the RGB-D camera coordinate frame FC to
the robot coordinate frame FR is determined as follows. First, TC→R is initial-
ized using the roughly known geometrical information between the RGB-D
camera and the robot root. There is only one rotational component with
angle θ around the y-axis5, and three unknown translational components
xC→R, yC→R, zC→R:

TC→R =


cos(θ) 0 − sin(θ) xC→R

0 1 0 yC→R

sin(θ) 0 cos(θ) zC→R

0 0 0 1

 . (3.3)

The final angle θ∗ of TC→R is found such that the x-axis of FR aligns with
the floor points in PC (except for a translational offset in the z-direction).
Then, using TC→R

−1, the objects ΩR in the reference frame FR are trans-
formed so that they can be visualized along the point cloud PC in the RGB-D
camera reference frame FC:

ΩC = TC→R
−1ΩR. (3.4)

The translational components are then changed step-wise such that the trans-
formed object markers ΩC visually match with the corresponding objects in

5 The camera has been mounted such that there is no rotation around the x and z-axes, in other
words there are no yaw and roll.
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the point cloud, at which point the final values x∗C→R, y∗C→R and z∗C→R are
found.

Instead of this manual procedure, an iterative closest point algorithm
could be used to find this transformation automatically, which would also
make a dynamic camera position feasible. As TC→R remains static in the
proposed system, it was not necessary to automate the procedure.

3.2 level 1 perspective taking : which objects can you see?

The previous section introduced the markerless perception of the environ-
ment, including the estimation of the head pose of humans and the locations
of objects. This section introduces an algorithm for PT1. As a brief reminder,
PT1 is the ability to know which objects are seen by others. An example is
a situation where the robot is asked to grasp “the toy”, but the robot rec-
ognizes two toys, leading to an ambiguous situation. However, if the robot
knows that the human can see only one of the toys, the robot can infer which
toy is meant.

In previous works, the robot mentally transformed its perspective to that
of the other robot (Johnson and Demiris, 2005a, 2007) or human (Lemaignan
et al., 2017; Pandey et al., 2013) to judge the visibility of objects from their
perspective. This approach is not feasible in the proposed system, as it needs
a very accurate representation of the objects from a non-egocentric viewpoint
to recognize the objects in the mentally transformed image. Previously, this
was achieved using optical markers; however, this chapter presents a mark-
erless approach.

The line-of-sight tracing as presented in this chapter is a simpler and faster
way of judging the visibility. As discussed in Section 2.4, this approach is in-
spired by cognitive research, which suggests that a) there are two different
processes for PT (Flavell et al., 1981), and b) the process for PT1 is based
on line-of-sight tracing (Michelon and Zacks, 2006; Yaniv and Shatz, 1990).
Section 3.3 describes the approach used for PT2. There is one notable excep-
tion where line-of-sight tracing similar to ours is used (Pandey and Alami,
2010). However, in this work (Pandey and Alami, 2010) a motion capture
system is employed to detect the objects and humans, whereas the proposed
approach allows for more flexibility and does not require the environment
to be known a priori.

The PT1 algorithm is based on a line-of-sight tracing approach presented
by Amanatides and Woo (1987), which remains the foundation for most
works on line-of-sight tracing to date (Laine and Karras, 2011). First, the
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points pC
k ∈ PC captured by the depth camera are mapped into a grid of

voxels. The voxel grid VC approximates the 3D space spanned by the points
pC
k to volume items vC

k of equal shape (here: cubes of dimension ξ3), such
that:

VC = ∪Kk=1vC
k vC

a ∩ vC
b = ∅ ∀a,b, a 6= b. (3.5)

The coordinates of a point pC
k ∈ R3 in 3D space are mapped to its equivalent

voxel vC
k ∈ Z3 as follows:

vC
k = bpC

k/ξc. (3.6)

Equation (3.6) is used to compute the coordinates of the head poses HV,C

and object locations ΩV,C in the voxel grid.
The line-of-sight is traced between each human j = 1, . . . ,M and each

object i = 1, . . . ,N, leading to N ×M traces. The tracing is performed as
follows. A trace τj→i starts at the nose tip hV,C

j of the jth human, and its
target is the object at location ωV,C

i . At each step, depending on the offset
of the current voxel and the target voxel, a decision is made whether the
next voxel to be traversed is one step towards the x, y, or z-direction. If the
traversed voxel contains a point, the algorithm returns with the result that
the object is hidden. If the traversed voxel is closer to the target voxel than
a given threshold δ, the algorithm returns with the result that the object is
visible to the human. Algorithm 1 contains the pseudo-code for the line-of-
sight algorithm.

The result of the tracing, being either “visible” or “occluded”, is stored

in the elements S
Hj
i of matrix O (see Section 3.1). Figure 3.5 visualizes an

example trace. Interestingly, as discussed in Section 3.4.2, the execution time
of the proposed approach follows qualitatively the reaction times found in
humans (Michelon and Zacks, 2006).

3.3 level 2 perspective taking : what does the world look like

to you?

This section describes how PT2 tasks are solved in the proposed system. Two
tasks are differentiated: 1) estimating how the world is visually perceived by
a human (visual PT2), and 2) judging whether objects are to the left, right or
in front of the human (spatial PT2). The visual PT2 task is solved by trans-
forming the concatenated point cloudΠC (see Section 3.1.1) from the camera
reference frame FC in the reference frame of the jth human FHj , whose visu-
alization leads to a reconstructed view from the human’s perspective. Once
the point cloud is in the reference frame of the human, a simple case differ-
entiation is used to solve the spatial PT2 task.
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Algorithm 1: Level 1 Perspective Taking

Input : Voxel grid VC with leaf size ξ
Origin point hV,C

j and target point ωV,C
i

Output : Visibility of ωV,C
i from hV,C

j

direction ← (ωV,C
i − hV,C

j )/‖ωV,C
i − hV,C

j ‖ // Algorithm initialization

ΩC
V ← 3DtoVoxel(hV,C

j )
voxelmax ← VoxelTo3D(ΩC

V)
for l ∈ {x,y, z} do // Further initialization

if direction[l] < 0.0 then
step[l]← −1; voxelmax[l]← voxelmax[l] − ξ/2

else
step[l]← +1; voxelmax[l]← voxelmax[l] + ξ/2

// Amount of movement equaling width/height/depth of a voxel
tδ[l]← ξ/|direction[l]|
// Distance to intersection with voxel border
tmax[l]← (voxelmax[l] − hV,C

j )/direction[l]

while ΩC
V ∈ VC do // Traversal while voxel remains inside voxel grid

if ‖ΩC
V −ωV,C

i ‖ < δ then // Current voxel is close to target voxel
return visible

if isOccluded(ΩC
V) then

return occluded
// Decide whether to go along ray in x, y or z direction (based
// on which component (x, y or z) is closest to voxel border)
if tmax[x] 6 tmax[y] and tmax[x] 6 tmax[z] then

tmax[x]← tmax[x] + tδ[x]
ΩV[x] ←ΩV[x] + step[x]

else if tmax[y] 6 tmax[x] and tmax[y] 6 tmax[z] then
tmax[y]← tmax[y] + tδ[y]

ΩC
V[y] ←ΩC

V[y] + step[y]

else
tmax[z]← tmax[z] + tδ[z]

ΩC
V[z] ←ΩC

V[z] + step[z]

3.3.1 Level 2 Visual Perspective Taking

The view of the jth human is estimated by converting hC
j ∈ R6 from Euler

angles in the RGB-D coordinate frame FC (see Section 3.1.3) to a transforma-
tion matrix, and afterwards using this transformation matrix to convert ΠC

in the new reference frame FHj . First, hC
j is decomposed into its components:

hC
j = (hC

j,x,hC
j,y,hC

j,z,h
C
j,α,hC

j,β,hC
j,γ). (3.7)

The angles hC
j,α, hC

j,β, and hC
j,γ are yaw, pitch and roll angles, i. e. the first

rotation is described by hC
j,γ about the x-axis

(
Rj,x(γ)

)
, the second rotation by
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hC
j,β about the y-axis

(
Rj,y(β)

)
, and the third rotation by hC

j,α about the z-axis(
Rj,z(α)

)
(LaValle, 2006, p. 99). The 3x3 rotation matrix RC→Hj is obtained

as follows:
RC→Hj = Rj,z(α)Rj,y(β)Rj,x(γ). (3.8)

Finally, the homogeneous transformation TC→HC
j

with rotational compo-

nent RC→HC
j

and translational component tC
j = (hC

j,x,hC
j,y,hC

j,z)
> is calculated

as:

TC→HC
j
=

 RC→HC
j

tC
j

0 1

 . (3.9)

The transformation matrix is then used to obtain a point cloud whose
origin coincides with that of the nose tip of the jth human:

Π
Hj = TC→HC

j
ΠC (3.10)

The resulting point cloud ΠHj can then be visualized and contains an ap-
proximated view of what subject j is seeing. Figure 3.9 shows an example
of a reconstructed view and Section 3.4.4 contains more evaluations. In com-
parison to earlier works (Johnson and Demiris, 2005a, 2007; Lemaignan et al.,
2017; Pandey et al., 2013), the transformed view is solely based on the im-
ages acquired from the RGB-D camera during the environment mapping
(see Section 3.1.1), rather than an a priori known virtual environment. The
next section shows that the transformed cloud can also be used for spatial
reasoning.

3.3.2 Level 2 Spatial Perspective Taking

Spatial PT2 is the ability to judge the spatial location of an object from an-
other frame of reference. Here, the transformed point cloud ΠHj is used for
these judgments. Importantly, the judgments are universal, i. e. they do not
depend on the frame of reference. This means that the iCub can transfer the
knowledge acquired from an egocentric viewpoint (“the toy is to my left”)
to that of another viewpoint (“the toy is to his right”) without changes in
the underlying algorithm. This is not limited to spatial PT2 but might also
be used for other tasks such as learning by imitation (Demiris and Johnson,
2003), as discussed further in Chapter 6 of this thesis.

This section first presents a simple spatial reasoning approach that allows
the iCub to judge the object locations from the iCub’s own viewpoint. Then,
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the same algorithm is applied to the transformed view, allowing the robot
to reason about the human’s visual perception. Remember that ωR

i ∈ R3

denotes the object location in the robot’s reference frame FR, and LR
i ∈

{left, central, right} describes the spatial relationship between object i and
the robot. The left/right judgments are made as follows, with θ = 7.5◦ and
αR
i = arctan(ωR

i,x/ω
R
i,y):

LR
i =


left if αR

i > +θ

right if αR
i < −θ

central otherwise.

(3.11)

Spatial PT2 is performed in the same way, with the only difference being
the angle which is given as the input. Using Equations (3.3) and (3.9), the
object location ωR

i is transformed in the reference frame FHj of human j:

ω
Hj
i = TC→HjTC→R

−1ωR
i . (3.12)

Then, the angles α
Hj
i = arctan(ω

Hj
i,x/ω

Hj
i,y) are provided to the algorithm in

Equation (3.11), and the return values are used to fill L
Hj
i of the perception

matrix O. Albeit simple, this is a powerful approach to allow the iCub to
take the spatial perspective of humans. The knowledge is then used by the
iCub to refer to objects as seen by the human, e. g. “I want to play with the
toy on your left”.

3.4 experimental evaluation

This section evaluates the methods presented in this chapter. An iCub hu-
manoid robot mounted on an iKart mobile base is utilized, with an RGB-D
camera attached zC→R = 57.5 cm centrally above the robot root frame FR,
at an angle of θ = 26◦ downward facing (see Figure 3.2). The ASUS Xtion
Pro is used as RGB-D camera, which provides RGB and depth images with
a resolution of 1280× 1024 and 320× 240 pixels respectively (for more in-
formation, please refer to Appendix A.5). This allows the iCub to observe
objects placed in front of it on a table, as well as to observe one or two hu-
mans sitting at the other end of the table. There is an accompanying video
for a demonstration of the experimental results6.

6 https://www.youtube.com/watch?v=x6EuFzWreq8

https://www.youtube.com/watch?v=x6EuFzWreq8
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3.4.1 Level 1 Perspective Taking Performance

Section 3.2 proposed a line-of-sight tracing algorithm to judge which objects
are seen by the humans. It was argued that this is a suitable algorithm in
a markerless scenario, where object recognition in the transformed view of
the human is a yet to be solved problem.

The following demonstration shows the effectiveness of this proposal in
three different scenarios. In all scenarios, N = 3 different objects (a clock, a
joystick and a pen) are placed on a table that is situated between the iCub
and the subject (six subjects were evaluated). In Figure 3.5, small spheres
are used to visualize the traced line-of-sight, and large spheres are used to
denote the object locations. In the first case, the subject can see all objects.
In the second case, one object is hidden from the subject, and the tracing
stops at the barrier. Similarly, the third case shows two occluded objects. For
a better comparison, Figure 3.5(d) shows the actual view of the subject. The
line-of-sight tracing algorithm has successfully determined which objects
can be seen, demonstrating the robustness of the proposed approach.

(a) All objects visible (b) One object occluded

(c) Two objects occluded (d) Subject’s view for (c)

Figure 3.5: Level one perspective taking in different scenarios. The visible objects
are correctly inferred in all scenarios.
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3.4.2 Level 1 Perspective Taking Comparison to Human Data

While there is a broad agreement that the human visual system employs
line-of-sight tracing to solve level 1 PT tasks (Kessler and Rutherford, 2010;
Michelon and Zacks, 2006; Wang et al., 2016; Yaniv and Shatz, 1990), to
my knowledge there is only a single experiment where the subject-object
distance is varied and the impact on the response time is measured in a PT1

task (Michelon and Zacks, 2006). In this experiment, Michelon and Zacks
(2006) have found a linear trend between distance and response time.

Figure 3.6 shows the number of voxel traversals (which serves as proxy
for the response time) using the line-of-sight tracing algorithm presented in
Section 3.2. The algorithm’s response time is near linear (R2 = 0.926), which
would suggest that humans might rely on a similar strategy to solve PT1

tasks. A direct comparison with human data cannot be drawn as Michelon
and Zacks (2006) contains only two data points, one for near objects (0.31m
distance) and another for far objects (0.67m distance).
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Figure 3.6: Response time profile for line-of-sight tracing. The number of voxel
traversals using the proposed line-of-sight algorithm are shown in blue,
along with the linear regression line (R2 = 0.926). The distance between
the robot and subject is varied between 0.5m and 1.1m.

3.4.3 Head Pose Estimation with Applied Normalization

This section evaluates the proposed head pose estimation algorithm that nor-
malizes the input data. In Section 3.1.3, it was hypothesized that the normal-
ization makes the algorithm more invariant to alterations in the viewpoint
so that a pre-trained state-of-the-art head pose estimator can be applied in a
scenario that differs largely from the training input. To validate this hypoth-
esis, the original algorithm is compared with the extended algorithm on six
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Subject 1 far left Subject 1 left Subject 1 central Subject 1 right Subject 1 far right

Subject 2 far left Subject 2 left Subject 2 central Subject 2 right Subject 2 far right

Figure 3.7: Qualitative comparison of the normalized head pose algorithm (green
arrows) and the original method (white, dotted arrows). The normalized
method leads to a much higher accuracy of the head pose estimation
for all head rotations. For three rotations of subject 1, the normalized
method resulted in accurate pose estimates whereas the original method
failed to detect the head.

subjects each with five different poses, capturing a wide range of horizontal
angles. All parameters were kept constant, and both methods were applied
to the same input image.

A qualitative comparison is shown in Figure 3.7. Without normalizing
the input, the resulting head poses were center-biased for all subjects. For
the first and third subject, the original method was not able to estimate a
head pose for large angles, whereas the improved method returned accurate
estimates. For the sixth subject, the way the subject’s hair had fallen across
his face resulted in incorrect estimates for both the original and proposed
methods.

A quantitative comparison was performed as follows. Six subjects focused
on five points with varying distance and horizontal angle from the subject
(far left / far right focal points: 1.19m from the subject at ±33◦ angle; left /
right focal points: 1.07m at ±20◦ angle; center focal point: 1.0m distance). All
focal points were level with the heads of the subjects. Figure 3.8 shows that
spatial PT using the normalized algorithm is significantly more accurate
(paired t-test, p < 0.01), allowing the robot to determine which object is
being looked at with reasonably high accuracy even at large angles and
distances.
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Figure 3.8: Horizontal error for spatial perspective taking, using the original (blue)
and normalized (green) head pose estimation algorithms.

3.4.4 Level 2 Perspective Taking Performance

Section 3.3 introduced an algorithm to mentally rotate the point cloud ac-
quired by the environment mapping in the frame of reference of the human
to estimate what the world looks like to the human. Furthermore, it was
shown that rotating the point cloud allows using the same spatial reasoning
algorithm as from the robot’s perspective. This section validates this pro-
posal in a similar setup to the experiments on PT1. Both demonstrations
were carried out with six subjects.

The first demonstration is concerned with visual PT2. Three objects are
placed on a table between the iCub and the subject: a joystick to the left of
the subject, a toy in the center, and a cup to the right of the subject. First, as
shown in Figure 3.9, a mental transform of the point cloud in the reference
frame of the human is performed. Albeit being a low-resolution approxi-
mation due to the RGB-D camera, the gist of the scene is comprehensible.
Importantly, the iCub uses the mapped environment to reason about areas
of the scene that cannot currently be perceived by the robot. While this works
well for the overall scene, one can observe that the system so far does not
build a 3D model of the objects, but rather only represents the object by the
surface that can currently be perceived by the robot. Section 7.2 discusses
this limitation further.

The second demonstration evaluates spatial PT2. The subject is asked to
look at a specific object (while keeping the eyes straight, i. e. only moving
the head) and the spatial reasoning algorithm is applied. For example, using
the setup in Figure 3.5(a), the subject was asked to look at the joystick. The

output of the spatial reasoning was as follows: L
Hj
pen = left, L

Hj
joystick = center

and L
Hj
clock = right. Similarly, in the other scenarios (where the subject was



58 perspective taking in markerless environments

(a) Approximated view of the human (b) View from the robot

Figure 3.9: (a) Approximated view of the human using a mental transformation.
The robot, while facing the human, correctly estimates that the human
is looking at a table with three objects. Also, as the robot has a map of
the environment, it can reason about areas of the environment that are
currently perceived by the human, but not by the robot.
(b) The robot’s current view.

asked to look at the pen and at the clock respectively), the spatial reasoning
determined the object location from the human’s view correctly. Detailed
quantitative evaluations are contained in Section 5.6, where the subject’s eye
gaze is also taken into account.

3.5 conclusions

This chapter introduced a novel artificial visual system that allows a robot to
take the perspective of surrounding humans. The combined improvements
in key parts of the visuospatial perspective taking pipeline have led to a
system that works in markerless setups. The system was validated in several
experiments using an iCub humanoid robot.

To estimate the head pose, a new method was proposed that normalizes
the input images, so they become more similar to the images contained in
the training dataset. This improves the performance in scenarios where the
pre-normalized input data is dissimilar to the training data, which extends
the application scenarios of the head pose estimator.

Line-of-sight tracing was employed to solve PT1 tasks, i. e. to determine
whether an object is visible to the human, and it was highlighted that previ-
ous methods are not suitable for a markerless environment. For PT2, a men-
tal perspective transformation is used to reconstruct the world from another
viewpoint, whereby the robot does not have any prior information about the
world and is learning the environment online. It was demonstrated that the
robot can judge whether objects are to the left, right or in front of a human
using the same algorithm as from an egocentric perspective.
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Previous works need artificial markers and/or motion capture systems,
which constrains their usability. In contrast, the proposed system can be
applied to any environment, e. g. care homes where a robot might aid elderly
people by describing object locations in their frame of reference (“the remote
control is to your left”).

One limitation is that the artificial visual system assumes normal vision
of the subject. If the subject has loss of vision, the algorithms might, for
example, find that an object is visible to the subject because the line-of-sight
is free of obstacles, where instead the subject’s vision is too low to see the
object. Section 7.2 outlines more limitations of the work presented in this
chapter.

The artificial visual system would also benefit from more accurate gaze
estimates by taking the eye movements of the human into account. This
research direction is discussed further in Chapter 5.
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4
I C U B - H R I S O F T WA R E F R A M E W O R K

This chapter addresses the second research question:

“How can a perspective taking system be integrated into a cogni-
tive architecture for human-robot interactions (HRIs)?”

The methodology presented in the previous chapter allows the iCub robot
to perceive its environment without the use of artificial markers, and reason
about the environment from the robot’s and the human’s point of view us-
ing visual and spatial perspective taking (PT) abilities. However, generating
complex, human-like behavior requires the integration of more components
beyond PT, for example using a scalable cognitive architecture. Hence, this
chapter presents the iCub-HRI library, which provides convenience wrap-
pers for components related to perception (agent tracking, speech recogni-
tion, touch detection), object manipulation (basic and complex motor ac-
tions) and social interaction (speech synthesis, joint attention). The library
is exposed as a C++ library with bindings for Java (which allow the use of
iCub-HRI within MATLAB) and Python. This allows using the PT abilities
introduced earlier in this chapter in a powerful, generic framework for HRI.
The code is available for download on the designated GitHub repository1

alongside extensive documentation (including class diagrams) and tutorials.
This chapter’s research has been previously published in Fischer et al.

(2018).

4.1 design principles

The following set of guidelines and design principles were adopted when
coding the framework.

• Adaptability and ease of use: The framework should be easy to adapt by
the community. Individual parts of the framework should only depend
on other parts if necessary and substituting components should be
easy. Furthermore, all libraries and modules should be documented
appropriately.

1 https://github.com/robotology/icub-hri
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• Provision of an overall framework: Related to the previous goal, the aim
is to provide an overall framework which can work “out of the box”.
Hence, the proposed framework contains modules related to percep-
tion, action execution, and social interaction.

• Extensibility: It should be easy to extend the framework with new mod-
ules. Rather than tailoring existing modules to work with the iCub-HRI
framework, it should be possible to write wrapper code for the integra-
tion.

• Shared, centralized knowledge representation: Each module should have
access to the same knowledge database, and the contained knowledge
should follow a standardized format. Within iCub-HRI, this knowl-
edge database is called the working memory, and the contents are Enti-
ties or derivatives thereof. The working memory is the default means
of communicating among modules.

• Open software: The code is released open source and made publicly
available. All dependencies must be available as open source software
too.

4.2 library overview

Due to the support of distributed computation within the Yet Another Robot
Platform (YARP) middleware (see Appendix A.2 for more details), there are
typically many modules running simultaneously when conducting research
on the iCub. Data are exchanged using YARP’s Bottle container, which can en-
capsulate data of arbitrary length and varying type. While this allows a high
degree of flexibility, these containers are error-prone due to the requirement
to parse the messages dynamically. This makes verification of compatibility
and versioning when used across a large number of modules difficult (Natale
et al., 2016). Thus the iCub-HRI library introduces a fixed data representa-
tions for knowledge (fully compatible with the Bottle container), similar to
those used in Robot Operating System (ROS) messages (Quigley et al., 2009;
Appendix A.1 contains more details on ROS) and the Interface Description
Language (IDL) in YARP (Fitzpatrick et al., 2014). Contrary to ROS mes-
sages and IDLs, the iCub-HRI library uses the same representations across
all components. Section 4.3 details the representations and their exchange
that is managed in a working memory.



4.3 knowledge representation and exchange 63

Subsystems describe the communication protocol with external modules.
As described in Section 4.4, each subsystem connects to a host (i. e. external
module) and abstracts away the communication internals. Finally, the icub-
Client class is designed with added convenience for end users in mind such
that all subsystems and other higher level methods are available from within
a single class.

4.3 knowledge representation and exchange

The basic representation type is an Entity, which is specified by an ID and
an associated name. The ID is used when storing and retrieving the entity
from the working memory. Several entities can be linked together through
a Relation, for example ‘Paul’ (subject) ‘holds’ (verb) ‘duck’ (object). In the
context of this thesis, relations of the following type are used to indicate
whether an agent can see an object from their perspective (level one perspec-
tive taking): ‘Paul’ (subject) ‘sees’ (verb) ‘duck’ (object). Similarly, for level
two perspective taking, the relation encodes whether the object is to the left,
right, or central in front of the agent. Lallée and Verschure (2015) provide
further details on relations.

Other knowledge representations inherit the basic properties and meth-
ods of Entity and extend them further. The Object class has additional prop-
erties representing the pose, size, presence, and saliency of an object (see
Section 4.5.1 for details of how these properties are acquired). The Agent
class represents a human partner, which besides all properties of an Object
also stores the positions of all body parts and a list of beliefs. Another com-
monly used representation is that of a Bodypart, which represents a part of
the robot’s body. A Bodypart also inherits all attributes of an Object, and ad-
ditionally contains the related joint number, tactile patch identifier, and cor-
responding body part of the human. Zambelli et al. (2016) have used these
representations to anchor self-learned representations to those of a human
interacting with the robot.

These representations must be shared across different modules (for exam-
ple between perceptual modules and the more abstract reactive layer as de-
scribed later in this section), and the OPCClient class automates the exchange
of representations with the working memory of the iCub ecosystem (Objects
Properties Collector; OPC, see Lallée and Verschure, 2015). The OPC is an
ontology-based knowledge representation system which is grounded on the
need of humans and other social animals to interact in a physical, multi-
agent world (see Lallée and Verschure, 2015).
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In this direction, the role of such knowledge representation should be
to structure and distribute information to different modules in an asyn-
chronous (on-demand) and centralized way. The design is inspired by the
repository pattern known from software engineering (Evans, 2004), and its
usage is similar to the centralized version control software Apache Subver-
sion (known as SVN)2. For storage and retrieval, the OPCClient provides
methods such as checkout() to poll representations from the shared mem-
ory, update() to update existing representations, and commit() to overwrite
representations in the memory with the local version of the module. Alto-
gether, this implementation provides a shared, centralized knowledge repre-
sentation, enabling asynchronous access to the information. This follows the
design principle outlined in Section 4.1.

4.4 subsystems

A Subsystem provides a wrapper around the representations used by exter-
nal components and the ones used within iCub-HRI, which compares to the
façade software engineering pattern (Gamma et al., 1994). This has several
advantages, including that the complexity of remote procedure calls is hid-
den from the user and that formerly “incompatible” components can now
be used within the same project. The following paragraphs provide a brief
list of the most commonly used interfaces of these subsystems. The docu-
mentation on GitHub3 contains the complete list.

The advantages outlined above are especially evident in the subsystems
for the Actions Rendering Engine (ARE; follow up work on Pattacini et al.,
2010)4 and KARMA (Tikhanoff et al., 2015)5 object manipulation libraries,
which are typically used by the iCub community to issue high-level motor
commands. If directly called, they require the provision of complex parame-
ters. Contrary, using iCub-HRI, one merely specifies the desired action and
the name of the target object, as further demonstrated in Section 4.6.1.

2 https://subversion.apache.org/
3 https://robotology.github.io/icub-hri/→ iCub-HRI libraries→ Subsystems
4 The following interfaces are provided by the ARE subsystem: 1) home() to put the robot or

a specified part in the home position, 2) take() to reach and grasp an object, 3) push() to
laterally push an object, 4) point() to an object, 5), expect() to extend the hand and wait for
an object, 6) drop() an object which is currently held, 7) wave() the robot’s hands, 8) look()
at an object, and 9) track() a moving object.

5 The following interfaces are provided by the KARMA subsystem: 1) pushKarmaLeft() and
pushKarmaRight() to push an object to the left/right side with a specified target position, 2)
pushKarmaFront() to push an object forwards, and 3) pullKarmaBack() to bring an object
closer to the robot.

https://subversion.apache.org/
https://robotology.github.io/icub-hri/
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Other important subsystems are those for speech recognition and syn-
thesis. Both are convenience wrappers for the functionality offered in the
‘speech’ repository of the iCub ecosystem. The speech synthesizer allows for
speech production from text using a single command say(), with the only
parameter being the sentence to be spoken, while being agnostic to the un-
derlying synthesizer (Acapela6, eSpeak7, Festival8, and SVOX Pico9 are sup-
ported). The speech recognizer relies on the Microsoft Speech API10, which
allows recognition and extraction of words from spoken utterance given a
grammar file (using the command recogFromGrammarLoop()).

The functionality of the different subsystems is aggregated in the icub-
Client class, which allows the use of the different subsystems from within
a single class instance. A configuration file is used to specify which subsys-
tems a module requires, such that no unnecessary resources are bound.

4.5 icub-hri modules

The modules accompanying the iCub-HRI library can be grouped into four
main areas: 1) perception, 2) action, 3) social interaction, and 4) miscella-
neous tools. All modules have access to the knowledge introduced in the
previous section (as they use the iCub-HRI library) and none of them is de-
pendent on the other; i. e. one can choose which subset of modules to run
for each experiment, if any.

4.5.1 Perception Modules

agent detector The agentDetector module is responsible for detect-
ing and tracking the skeleton of a human partner using an RGB-D camera
mounted behind the robot. It converts the joint positions detected by the
RGB-D camera into the reference frame of the iCub and continuously up-
dates the joint positions of the human partner in the working memory.

default speech recognition The Ears module allows for recogni-
tion of speech utterances from the human when no other module is trying
to recognize speech. It takes the role of a central component to redirect the
command extracted from the recognized sentence to the appropriate module,

6 http://www.acapela-group.com
7 http://espeak.sourceforge.net
8 http://www.cstr.ed.ac.uk/projects/festival/
9 https://github.com/robotology/speech/tree/master/svox-speech

10 https://msdn.microsoft.com/en-us/library/ee125663(v=vs.85).aspx

http://www.acapela-group.com
http://espeak.sourceforge.net
http://www.cstr.ed.ac.uk/projects/festival/
https://github.com/robotology/speech/tree/master/svox-speech
https://msdn.microsoft.com/en-us/library/ee125663(v=vs.85).aspx
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while still allowing other modules to access the speech recognition subsys-
tem directly if needed.

object recognition The object recognition module within iCub-HRI
is the same as described within Section 3.1.2 of this chapter. In short, the ob-
ject regions are identified based on the luminosity of the image and features
are subsequently extracted using a deep neural network. The object class is
determined using a support vector machine, and the object location is found
using the stereo vision system of the iCub.

saliency The module PASAR (Mathews et al., 2012) detects the appear-
ance and disappearance of objects, and the saliency of an object is increased
proportionally to its acceleration. This also allows simple detection of point-
ing actions by measuring the proximity of the human’s hand to each of the
objects and increases the saliency with inverse proportion to the distance.

face and action recognition The Synthetic Sensory Memory mod-
ule (Martinez-Hernandez et al., 2016) is used to recognize faces and ac-
tions performed on objects. It uses Gaussian Process Latent Variable Models
(Damianou et al., 2011) to train classifiers for faces and actions, which can
then be loaded during an interaction to perform real-time classification.

4.5.2 Action Modules

face tracking The face tracking module detects the face of a human
based on Haar cascades implemented in OpenCV (Viola and Jones, 2001),
and uses the velocity control of the iCub to follow the face. This module can
be used in human-robot interaction scenarios for increased vividness of the
robot.

babbling The Babbling module allows the issue of pseudo-random (si-
nusoids) commands to the iCub (either individual or several joints). It has
been used to learn forward and inverse models for the iCub (Zambelli and
Demiris, 2017), as well as to learn correspondence between the robot’s body
parts and that of the human (Zambelli et al., 2016). Within the scope of iCub-
HRI, it is mainly used for body part learning.
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4.5.3 Social Interaction Modules

proactive tagging The robot can acquire knowledge in two different
ways: proactively, where a decaying drive to acquire knowledge triggers the
behavior to obtain the name of an object or body part, or reactively, where
the knowledge acquisition follows a human command. The demonstration
described in this thesis is centered around the proactive tagging module,
which makes use of several subsystems and connects directly to several other
modules. It uses the speech recognition subsystem to acquire the names of
entities (objects in the vicinity, partners, and body parts), the speech synthe-
sis subsystem to enable the robot to express itself verbally (to ask for object
names), and the ARE subsystem to point at objects and make them salient.
Furthermore, it makes use of the functionalities provided by a number of
other modules presented within the previous section, including PASAR to
detect which object the partner is pointing to, the face recognition module
to recognize the partner, and the touchDetector to identify which skin patch
was being touched by the human. Figure 4.1 shows an overview of the inter-
action between the modules.

reactive layer The reactive layer implements drive reduction mecha-
nisms for self-regulating the robot’s behavior. A drive is defined as a con-
trol loop that triggers appropriate behaviors whenever an associated inter-
nal state variable goes out of its homeostatic range. These drives present a
way to self-regulate value dynamically and autonomously (Sanchez-Fibla
et al., 2010). This has been shown to positively influence the acceptance
of the human-robot interaction by naive users (Lallée and Verschure, 2015;
Vouloutsi et al., 2014). Figure 4.2 shows the module interaction where an
internal state variable goes out of the homeostatic range.

drive system In the social robotics context, two example drives allow
the robot to balance knowledge acquisition and expression autonomously.
The drive for knowledge acquisition maintains a curiosity-driven exploration of
the environment by proactively requesting information from a human about
the present entities (e. g. their name). The drive for knowledge expression regu-
lates how the iCub expresses the acquired knowledge through synchronized
speech, pointing actions and gaze. It informs the human about the robot’s
current state of knowledge and thus maintains the interaction.
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Figure 4.1: Temporal Unified Modeling Language diagram for an interaction where
a human gives a speech command to the iCub to push an object which is
currently unknown to the robot. The diagram depicts the modules and
subsystems involved, and shows the information flow. After converting
the speech command to an action plan, the robot first asks the human
to indicate the desired object, and subsequently pushes that object. The
agent detector and object recognition modules continuously update the
knowledge database throughout the interaction, and the object name is
updated after the human indicates the object by pointing to it.

4.5.4 Tools

Several tools provide pre-processing functionalities for the other modules or
interact with other modules of the iCub ecosystem so that they can be easily
used within iCub-HRI.

guiupdater The guiUpdater translates the representations of iCub-HRI
to those used within the iCubGui. More specifically, it allows the display of
location for objects and agents stored within the working memory along
with specific properties, such as their color and name.

opcpopulator The opcPopulator can be used to spawn new entities in
the simulation and control their parameters. This allows testing new func-
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Figure 4.2: Temporal Unified Modeling Language diagram for an interaction where
a drive threshold is hit. This triggers the behavior to tag an unknown ob-
ject autonomously. The robot first points to the unknown object and then
asks the human for the object’s name. Once the human has responded,
the proactive tagging module changes the object name in the OPC.

tionalities in a controlled environment, without the noise encountered when
using the real robot.

4.6 using icub-hri

There is a variety of use cases for iCub-HRI. Section 4.6.1 shows the ease
of use of iCub-HRI in a representative example related to the object ma-
nipulation subsystem. Subsequently, Section 4.6.2 briefly describes how an
extended version of this tutorial has been used to tackle the symbol ground-
ing problem in the DAC-h3 framework (Moulin-Frier, Fischer et al., 2018).
This is followed by a description of the benefits of this library for technical
and non-technical users alike in Section 4.6.3.
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#include <cstdlib >
#include <yarp/os/all.h>
#include <icubhri/clients/icubClient.h>

int main() {
yarp::os:: Network yarp;

icubhri :: ICubClient iCub("KARMA_Simple");
// connect to subsystems
if(!iCub.connect ()) { return -1; }

// objectName as recognized by object recognition
std:: string objectName = "octopus";
double targetPositionX = -0.45;

bool ok = iCub.pushKarmaFront(objectName ,
targetPositionX);

yInfo() << (ok ? "Success" : "Failed");

return EXIT_SUCCESS;
}

Listing 4.1: Pushing an object using iCub-HRI is straightforward and requires the
provision of just two parameters: the object to be pushed and the desired
target position.

4.6.1 Example Usage of the Object Manipulation Subsystems

The GitHub repository11 contains a range of examples, including examples
of using the KARMA and ARE subsystems to manipulate objects, i. e. grasp-
ing, pushing or pulling them, in C++, Python, and MATLAB. Some exam-
ples use yarp::sig::Vector instances to specify the target location (important
for users looking to employ iCub-HRI as a light-weight library), while oth-
ers rely on the Object class introduced earlier (providing seamless integration
with the contained object recognition module). Listing 4.1 shows an example
which uses the iCub-HRI library to push an object using the KARMA Subsys-
tem, while Listing 4.2 contains code directly communicating with KARMA,
which is much less intuitive and likely distracts from the desired code re-
lated to the human-robot interaction.

11 https://github.com/robotology/icub-hri

https://github.com/robotology/icub-hri
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#include <cstdlib >
#include <yarp/os/all.h>
#include <yarp/sig/all.h>

yarp::sig:: Vector getPos(std:: string name) {
// Communicate with object recognition module to
// obtain object position.
// This is not shown for brevity.

}

int main() {
yarp::os:: Network yarp;

yarp::os:: RpcClient toKarma;
toKarma.open("/example/toKarma");
yarp::os:: Network :: connect(toKarma.getName (),

"/karmaMotor/rpc");

yarp::sig:: Vector pos = getPos("octopus");
double targetPositionX = -0.45;
double radius = fabs(pos[0] - targetPositionX);

yarp::os:: Bottle cmd , reply;
cmd.addString("push");
cmd.addDouble(pos [0]);
cmd.addDouble(pos [1]);
cmd.addDouble(pos [2]);
cmd.addDouble (-90); // angle theta
cmd.addDouble(radius); // distance to be pushed
toKarma.write(cmd , reply);
bool ok = (reply.get (0).asVocab () == yarp::os:: Vocab::

encode("ack"));
yInfo() << (ok ? "Success" : "Failed");

return EXIT_SUCCESS;
}

Listing 4.2: Pushing an object communicating directly with KARMA. Besides
being less readable, this code is also more error-prone as the Bottle’s
components need to be provided with the right type and in the right
order. Furthermore, many more parameters are involved.
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4.6.2 Usage within the DAC-h3 framework

iCub-HRI has been used as the underlying framework for the DAC-h3 cog-
nitive architecture (Moulin-Frier, Fischer et al., 2018). There, the iCub learns
to solve the symbol grounding problem, acquire language capabilities, exe-
cute goal-oriented behaviors, and express a verbal narrative of the robot’s
experience in the world.

The work of Moulin-Frier, Fischer et al. (2018) also demonstrates that the
software framework presented in this chapter can be readily used to study
human-robot interaction with naive subjects. More specifically, the robot’s
task is to explore its environment. It asks the humans for their names and
interacts with them to learn the names of objects. Once the object names are
known, the iCub then interacts with a human to move objects either closer
to the robot or to pass them.

4.6.3 More Applications and Use Cases

The central advantage of iCub-HRI is that the library bypasses the require-
ment for obtaining a working knowledge of the operation of an extensive
range of modules during the normal operation of the iCub and of the mod-
ule interaction before starting to develop one’s specific application on top
of these modules. Furthermore, iCub-HRI’s modular subsystem architecture
means that one can easily integrate applications developed on top of iCub-
HRI to further abstract and accelerate the development of robotics applica-
tions.

The underlying design principles of iCub-HRI (see Section 4.1) and the
high-level abstractions of the robot’s basic input and output systems like
speech, vision and motor control allow a widely varied range of use cases.
For users with a non-technical background, iCub-HRI has the potential to
reduce the learning curve for exploiting the iCub robotic platform, with
potential applications such as robotic art, research into the societal effects
of robotics, investigations into human-robot collaboration and human-robot
interaction studies investigating the psychological effects of such an inter-
action. For users more familiar with the iCub, the flexibility of the library
allows them to focus on the core of their applications, where iCub-HRI pro-
vides a bridge to quickly integrate these applications with the sensory, motor
and affective systems of the robot. This reduces the implementation effort
which leads to faster developments and allows for accelerated prototyping
of embodied artificial intelligence applications.
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4.7 conclusions

This chapter introduced iCub-HRI, a software framework that integrates var-
ious components available within the iCub ecosystem and makes them eas-
ily accessible through method calls. iCub-HRI can be used in various ways,
from a lightweight library up to an integrated platform for complex stud-
ies on HRI. While iCub-HRI is tailored for the iCub humanoid robot, many
parts are platform independent and can be used on other robotic platforms
as well.

It was shown that the PT framework introduced in Chapter 3 can be inte-
grated within iCub-HRI, such that other modules have access to information
related to the perception of the environment from the subject’s point of view.
The next chapter investigates the estimation of a human’s gaze direction in
HRI scenarios while taking both head pose and eye gaze into account.
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5
R E A L - T I M E E Y E G A Z E E S T I M AT I O N I N N AT U R A L
E N V I R O N M E N T S

This chapter addresses the third research question:

“How can a robot accurately estimate the gaze direction of a hu-
man, taking both head pose and eye gaze into account, and can
such mechanisms be learned from data?”

The proposed method in this chapter is titled RT-GENE (“Real-Time Gaze
Estimation in Natural Environments”). It overcomes one of the main limita-
tions of the artificial visual system introduced in Chapter 3 – namely, tak-
ing the human’s eye gaze into account. Table 5.1 shows that this goes be-
yond previous works as the eye gaze can be estimated even in large camera-
subject distances, which are commonly encountered in human-robot interac-
tion (HRI) scenarios. This is achieved using a novel architecture for ground
truth annotations that was used to collect a new dataset, as well as an im-
proved gaze estimator that introduces ensemble schemes to this area.

This chapter’s research has been previously published in Fischer, Chang
and Demiris (2018).

Table 5.1: Comparison with related works on gaze estimation

Paper
Head Eye

Input
Estimate

Distance Angle
Open

pose pose type Source

Deep Head Pose (Mukherjee and Robertson, 2015) x - RGB-D 3D vector All mixed All mixed -

Eyediap (Funes-Mora and Odobez, 2016) x x RGB-D 3D vector <150cm Frontal Partly

MPII Gaze (Zhang et al., 2015) x x RGB 2D vector Close Narrow x

UnityEyes (Wood et al., 2016) x x RGB 3D vector Close Frontal -

Valenti et al. (2012) x x RGB 3D vector 75cm Frontal -

Gaze Capture (Krafka et al., 2016) x x RGB Gaze on tablet Very close Narrow -

YAGD (Schillingmann and Nagai, 2015) x x RGB 3D vector 90-110cm Frontal x

Palinko et al. (2015) x x RGB 3D vector 60-100cm Frontal -

Gazefollow (Recasens et al., 2015) x x RGB 2D image pos All mixed All mixed x

Chamveha et al. (2013) - - RGB 1D vector Far All mixed -

RT-GENE x x RGB 3D vector 50-290cm Frontal x

75
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5.1 architecture overview

RT-GENE involves automatic annotation of ground truth datasets by combin-
ing a motion capture system, used for accurate detection of head pose, and
mobile eyetracking glasses, used for eye gaze annotation. Figure 5.1 shows
that this setup directly provides the gaze vector in an automated manner un-
der free-viewing conditions (i. e. without specifying an explicit gaze target),
which allows rapid recording of the dataset. Table 5.2 provides a comparison
of various gaze datasets including RT-GENE.

Table 5.2: Comparison of gaze datasets

Dataset
RGB / Annotation

#Images
Cl. Med. Far Head pose Gaze Pupil

Orient.RGB-D type Dist. Dist. Dist. annot. annot. annot.

Eyediap (Funes Mora et al., 2014) RGB-D Gaze Unknown x - - x x Partly Frontal

MPII Gaze (Zhang et al., 2015) RGB Gaze 213,659 x - - x x Partly Frontal

CMU Multi-Pie (Gross et al., 2008) RGB Head pose 750,000 x - - x Partly Partly Frontal

BIWI (Fanelli et al., 2013) RGB-D Head pose ca. 15,500 x - - x - - Frontal

ICT 3D Head Pose (Baltrusaitis et al., 2012) RGB-D Head pose 14,000 x - - x - - Frontal

Columbia (Smith et al., 2013) RGB Gaze 5,880 x - - 5 orient. x - Frontal

Vernissage (Jayagopi et al., 2013) RGB Head pose Unknown x - - x - - All

Boston Uni Head Pose (La Cascia et al., 2000) RGB Head pose 9,000 x - - x - - Frontal

Oxford Surveillance (Benfold and Reid, 2011) RGB Head pose 1,747 - - x x - - All

CAVIAR (Fisher, 2004) RGB Head pose 15,498 - - x x - - All

Chamveha (Chamveha et al., 2013) RGB Body pose 15,000 - - x - - - All

Coffeebreak (Cristani et al., 2011) RGB Head pose 18,117 x - - 6 orient. - - All

HIIT (Tosato et al., 2013) RGB Head pose 24,000 x - - 6 orient. - - All

QMUL MultiView (Gong et al., 1998) RGB Head pose 6,384 x - - x - - Frontal

ETH Face Pose (Breitenstein et al., 2008) Depth Head pose ca. 13,000 x - - x - - Frontal

SynthEyes (Wood et al., 2015) RGB Gaze 11,382 Eyes - - x x x Frontal

UT MultiView (Sugano et al., 2014) RGB Gaze 26,400 Eyes - - x x - Frontal

IDIAP Head Pose (Ba and Odobez, 2005) RGB Head pose Unknown x - - x - - Frontal

Eurecom Kinect (Min et al., 2014) RGB-D 6 landmarks Unknown x - - x - - Frontal

Gaze Capture (Krafka et al., 2016) RGB Screen coords. > 2.5M x - - - x - Frontal

Rice TabletGaze (Huang et al., 2017) RGB Screen coords. ca. 100,000 x - - - x - Frontal

Gazefollow (Recasens et al., 2015) RGB Screen coords. 122,143 x x x - x - All

RT-GENE RGB-D Gaze 122,531 x x - x x Partly Frontal

While the RT-GENE architecture provides accurate gaze annotations, it re-
quires the subjects to wear eyetracking glasses that introduce the problem of
unnatural subject appearance when recorded from an external camera (note
that the eyetracking glasses and motion capture system are only required to
capture the dataset, but not at inference time where only an RGB camera
is required). Since the aim is to estimate the gaze of subjects without the
use of eyetracking glasses, it is vital that the test images are not affected by
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Figure 5.1: RT-GENE architecture overview. During training, a motion capture sys-
tem is used to find the relative pose between mobile eyetracking glasses
and an RGB-D camera (both equipped with motion capture markers),
which provides the head pose of the subject. The eyetracking glasses
provide labels for the eye gaze vector with respect to the head pose. A
face image of the subject is extracted from the camera images, and a
semantic image inpainting network is used to remove the eyetracking
glasses. A landmark detection deep network extracts the positions of
five facial landmarks, which are used to generate eye patch images. Fi-
nally, the proposed gaze estimation network is trained on the annotated
gaze labels.

an alteration of the subjects’ appearances. For this purpose, a realistic im-
age generation method is applied in a new scenario, namely the inpainting
of the area covered by the eyetracking glasses. As shown in Figure 5.1, the
images with removed eyetracking glasses are then used to train a new gaze
estimation framework. The experiments in Section 5.6.1 will validate that the
inpainting improves the gaze estimation accuracy.

5.2 gaze dataset generation

One of the main challenges in appearance-based gaze estimation is accu-
rately annotating the gaze of subjects with natural appearance while allow-
ing free movements. This chapter presents an approach that allows auto-
matic annotation of ground truth gaze and head pose labels of subjects under
free-viewing conditions and with large camera-subject distances (Figure 5.2
shows the overall setup), and presents a new dataset following this approach.
The dataset was constructed using mobile eyetracking glasses and a Kinect



78 gaze estimation in natural environments

Mobile eye-
tracking glasses

Subject in distance of 
0.5-2.9m to camera

Motion capture cameras 
(eight cameras)

Rays tracing motion 
capture markers

RGB-D camera

Figure 5.2: Proposed setup for recording the RT-GENE gaze dataset. An RGB-D
camera records a set of images of a subject wearing Pupil Labs mobile
eyetracking glasses (Kassner et al., 2014). Markers that reflect infrared
light are attached to both the camera and the eyetracking glasses, in or-
der to be captured by motion capture cameras. The setup allows accurate
head pose and eye gaze annotations in an automated manner.

Figure 5.3: Some images contained in the RT-GENE dataset. The images show
that the camera pose and subject position was changed for each
subject.

v2 RGB-D camera, both equipped with motion capture markers, in order to
precisely find their poses relative to each other. The eye gaze of the subject
is annotated using the eyetracking glasses, while the Kinect v2 is used as
a recording device to provide RGB and depth images (see Appendix A.5
for more details). Figure 5.3 shows some example images contained in the
dataset.
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Figure 5.4: Left: 3D model of the eyetracking glasses including the motion capture
markers. Right: Eyetracking glasses worn by a subject. The 3D printed
yellow parts have been designed to hold the eye cameras of the eyetrack-
ing glasses in the same place for each subject.

5.2.1 Eye Gaze Annotation

As detailed in Appendix A.4, the gaze is annotated using a customized ver-
sion of the Pupil Labs eyetracking glasses (Kassner et al., 2014), which have a
very low average eye gaze error of 0.6 degrees in screen-based settings. In the
proposed dataset with significantly larger distances, the angular accuracy is
2.58± 0.56 degrees. The headset consists of a frame with a scene camera fac-
ing away from the subject and a 3D printed holder for the eye cameras. This
removes the need to adjust the eye camera placement for each subject. The
customized glasses provide two crucial advantages over the original headset.
Firstly, the eye cameras are mounted further from the subject, which leads
to fewer occlusions of the eye area. Secondly, as described in Section 5.4, the
fixed position of the holder allows the generation of a generic (as opposed to
subject-specific) 3D model of the glasses, which is needed for the inpainting
process. Figure 5.4 shows the generic 3D model and glasses worn by one of
the subjects.

5.2.2 Head Pose Annotation

A commercial OptiTrack motion capture system tracks the RGB-D camera
and eyetracking glasses using four markers attached to each object, with an
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average position error of 1mm for each marker. This allows us to infer the
pose of the eyetracking glasses with respect to the RGB-D camera, which
can be used to annotate the head pose as described below. Appendix A.6
contains more information about the motion capture system.

5.2.3 Coordinate Transforms

The fundamental challenge in the dataset collection setup was to relate the
eye gaze gE in the eyetracking reference frame FE to the visual frame of the
RGB-D camera FC as expressed by the transform TE→C. This transform is
also used to define the head pose hC as it coincides with TC→E. However, the
transform TE∗→C∗ provided by the motion capture system cannot be directly
used, as the frames perceived by the motion capture system, FE∗ and FC∗, do
not match the visual frames, FE and FC.

Therefore, the transforms TC→C∗ and TE→E∗must be found. The transform
TC→C∗ can be found by exploiting the property of RGB-D cameras that 3D
point coordinates of an object are known in the visual frame FC. If this ob-
ject is equipped with markers tracked by the motion capture system, the
matching coordinates in the corresponding motion capture frame FC∗ can
be found. By collecting a sufficiently large number of samples, the Nelder-
Mead method (Nelder and Mead, 1965) can be used to find TC→C∗ . With
the use of a 3D model of the eyetracking glasses, in which the coordinates
of the four attached markers and the pose of the world camera are known,
the accelerated iterative closest point algorithm (Besl and McKay, 1992) can
be used to find the transform TE→E∗ between the coordinates of the markers
within the model and those found using the motion capture system.

Using the transforms TE∗→C∗, TC→C∗ and TE→E∗ it is now possible to con-
vert between any two coordinate frames. Most importantly, this allows to
map the gaze vector gE to the frame of the RGB-D camera using TE→C:

gC = TE→C · gE. (5.1)

5.2.4 Data Collection Procedure

At the beginning of the recording procedure, the eyetracking glasses are
calibrated using a printed calibration marker, which is shown to the subject
in multiple positions covering the subject’s field of view while keeping the
head fixed. Subsequently, in the first session, subjects are recorded for 10
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minutes while wearing the eyetracking glasses. The subjects were instructed
to behave naturally while varying their head poses and eye gazes as much
as possible and moving within the motion capture area.

In the second session, the same subjects are recorded without the eyetrack-
ing glasses for another 10 minutes, which results in unlabeled images. These
images are used for the proposed inpainting method as described in Sec-
tion 5.4. To increase the variability of appearances for each subject, the 3D
location of the RGB-D camera, the viewing angle towards the subject and
the initial subject-camera distance are changed.

5.2.5 Post-Processing

The timestamps of the data points are used to synchronize the recorded im-
ages of the RGB-D camera with the gaze data gE of the eyetracking glasses.
The training data is filtered to only contain head poses hC between ±37.5
degrees horizontally and ±30 degrees vertically, which allows accurate ex-
traction of the images of both eyes. Furthermore, a confidence threshold of
0.98 is used to filter out blinks and images where the pupil was not detected
properly (see Kassner et al., 2014, for details).

5.2.6 Annotation Accuracy

To estimate the error caused by TE→E∗ , the temporal error of the motion cap-
ture system is identified. This is conducted by statically placing the eyetrack-
ing glasses in the motion capture area and measuring their orientation over
an extended period (60 seconds). The standard deviation of the measured
roll, pitch and yaw angles were 0.33, 0.36 and 0.54 degrees respectively.

To estimate the error for TE∗→C∗ , a turntable is used to rotate the eye-
tracking glasses by a known amount, and this is compared to the rotation
measured by the motion capture system. For a rotation of 180 degrees, a
mean error of 1.01 degrees was observed.

The low error values for TE→E∗ and TE∗→C∗ are in line with other works
that have used marker-based motion capture systems to obtain ground truth
annotations (see e. g. Elhayek et al., 2017 and Rogez and Schmid, 2016).

Furthermore, the RT-GENE dataset does not exhibit some errors that are
problematic in traditional datasets. In datasets built using gaze targets, train-
ing data can contain wrong annotations when the subject does not precisely
gaze at the target. Despite approaches taken to mitigate these effects in such
datasets (e. g. in MPII Gaze, Zhang et al., 2015, the subjects are asked to press
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Figure 5.5: Number of images per participant in the RT-GENE dataset. Participant
13 has the fewest images (1,400), whereas participant 2 has the most im-
ages (16,000). The number of images ranges significantly as head poses
outside of a specific range are filtered out as detailed in Section 5.2.5.

the space bar once the target is about to disappear), these types of errors are
entirely removed from the proposed target-independent setup. Furthermore,
another potential error source is due to blinking. Blinks are filtered out ef-
fectively in RT-GENE using a threshold parameter (see Section 5.2.5).

5.3 gaze dataset statistics

The proposed RT-GENE dataset contains recordings of 17 participants (11

male, 6 female), with a total of 122,531 labeled training images (see Fig-
ure 5.5 for an illustration of the number of labeled images per participant)
and 154,755 unlabeled images of the same subjects where the eyetracking
glasses are not worn.

Figure 5.6 shows the head pose and gaze angle distribution across all
subjects in comparison to the UT Multi-view (Sugano et al., 2014) and MPII
Gaze (Zhang et al., 2015) datasets. In the RT-GENE dataset, a much higher
variation is demonstrated in the gaze angle distribution, primarily due to the
design of the presented setup. The free-viewing task leads to a wider spread
and resembles natural eye behavior, rather than that associated with mobile
device interaction or screen viewing (as in Funes Mora et al., 2014; Huang
et al., 2017; Krafka et al., 2016; Zhang et al., 2015). Due to the synthesized
images, the UT Multi-view dataset (Sugano et al., 2014) also covers a wide
range of head pose angles; however, they are not continuous due to the fixed
placing of the virtual cameras which are used to render the synthesized
images.
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Figure 5.6: Top row: Gaze distribution of the MPII Gaze dataset (Zhang et al., 2015)
(left), the UT Multi-view dataset (Sugano et al., 2014) with and without
additional synthetic head poses (second from right and second from left
respectively) and the proposed RT-GENE dataset (right). Bottom row:
Head pose distributions, as above. The RT-GENE dataset covers a much
wider range of gaze angles and head poses, which makes it more suitable
for natural scenarios.

As presented in Figures 5.7 and 5.8, the camera-subject distances range
between 0.5m and 2.9m, with a mean distance of 1.82m. This compares
to a fixed distance of 0.6m for the UT Multi-view dataset (Sugano et al.,
2014), and a narrow distribution of 0.5m± 0.1m for the MPII Gaze dataset
(Zhang et al., 2015). Furthermore, the area covered by the subjects’ faces is
much lower in the RT-GENE dataset (mean: 100× 100 px) compared to other
datasets (MPII Gaze dataset mean: 485× 485 px). Thus, compared to many
other datasets that focus on close distance scenarios (Funes Mora et al., 2014;
Huang et al., 2017; Krafka et al., 2016; Sugano et al., 2014; Zhang et al., 2015),
the proposed RT-GENE dataset captures a more natural real-world setup.
The RT-GENE dataset is the first to provide accurate ground truth eye gaze
annotations in these settings in addition to head pose estimates.

5.4 inpainting of the eyetracking glasses

A disadvantage of using the eyetracking glasses is that they change the sub-
ject’s appearance. However, when the gaze estimation framework is used
in a natural setting, the subject will not be wearing the eyetracking glasses.
To remove any discrepancy between training and testing data, the regions
covered by the eyetracking glasses are semantically inpainted.

Image inpainting is the process of filling target regions in images by con-
sidering the image semantics. Early approaches included diffusion-based
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Figure 5.7: Distribution of distances between the camera and the subject for
the MPII Gaze dataset (Zhang et al., 2015, red), the UT Multi-view
dataset (Sugano et al., 2014, green) and the proposed RT-GENE dataset
(blue). The RT-GENE dataset covers significantly more varied distances,
with most camera-to-subject distances being within the range of 1.3m
and 2.3m and overall distances being between 0.5m and 2.9m.
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Figure 5.8: Distribution of camera-to-subject distances in the RT-GENE dataset. Fig-
ure 5.7 provides a discussion and comparison with other datasets.

texture synthesis methods (Ballester et al., 2001; Bertalmio et al., 2000; Chan
and Shen, 2002), where the target area is filled by extending the surround-
ing textures in a coarse to fine manner. For larger regions, patch-based
methods (Barnes et al., 2009; Efros and Leung, 1999; Hays and Efros, 2007;
Wilczkowiak et al., 2005) that take a semantic image patch from either the
input image or an image database are more successful.

Recently, semantic inpainting quality has been vastly improved through
the utilization of Generative Adversarial Networks (GANs) (Iizuka et al.,
2017; Pathak et al., 2016; Yeh et al., 2017). This GAN-based image inpainting
approach is adopted by considering both the textural similarity to the closely
surrounding area and the image semantics. To the best of my knowledge,
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this thesis is the first work to make use of a semantic inpainting method for
improving gaze estimation accuracy.

5.4.1 Masking the Region of the Eyetracking Glasses

The CAD model of the eyetracking glasses is made up of a set of N = 2662

vertices {vn}Nn=1, with vn ∈ R3. To find the target region that is to be in-
painted, TE→C is used for deriving the 3D position of each vertex in the
RGB-D camera frame. For extreme head poses, the subject’s head may ob-
scure certain parts of the eyetracking glasses. Thus, masking all pixels would
result in part of the image being inpainted unnecessarily. To overcome this
problem, the indicator function

1M
(
pn, vn

)
=
{
0 if

∥∥pn − vn
∥∥ < τ, else 1

}
(5.2)

is used to select vertices vn of the CAD model if they are within a tolerance
τ of their corresponding point pn in the depth field. Each selected vertex is
mapped using the camera projection matrix of the RGB-D camera into a 2D
image mask M = {mi,j}, where each entry mi,j ∈ {0, 1} shows whether the
pixel at location (i, j) needs to be inpainted.

5.4.2 Semantic Inpainting

A GAN-based image generation approach, similar to that of Yeh et al. (2017),
is used to seamlessly fill the masked regions of the eyetracking glasses. There
are two conditions to fulfill (Yeh et al., 2017): the inpainted result should look
realistic (perceptual loss Lperception) and the inpainted pixels should be well-
aligned with the surrounding pixels (contextual loss Lcontext). As shown in
Figure 5.9, the resolution of the face area is larger than the 64×64px sup-
ported in Yeh et al. (2017). The proposed architecture allows the inpainting
of images with resolution 224×224px1. This increased resolution is a crucial
feature, as reducing the face image resolution for inpainting purposes could
impact the gaze estimation accuracy.

Appendix B details the semantic inpainting methodology. It defines the
loss functions that were used, details the network architectures and provides
the parameters that were used for training the networks. Figure 5.10 shows
the application of inpainting in within RT-GENE.

1 While the mean face area in the RT-GENE dataset is 100×100px as shown in Figure 5.9, the
95

th percentile is 175×175px, which is considerably larger than the 64×64px supported by
Yeh et al. (2017).
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Figure 5.9: Face area distribution in the MPII Gaze dataset (Zhang et al., 2015, red)
and the proposed RT-GENE dataset (blue). The resolution of the face
areas in the RT-GENE dataset is much lower (mean 100×100px) than
that of the MPII Gaze dataset (mean 485×485px). This is mainly due to
the larger camera-subject distance (as shown in Figure 5.7).

5.5 gaze estimation networks

As shown in Figure 5.1, the gaze estimation is performed using several deep
networks. Firstly, Multi-task Cascaded Convolutional Networks (MTCNN,
Zhang et al., 2016) detects the face along with the landmark points of the
eyes, nose and mouth corners. Using the extracted landmarks, the face patch
is rotated and scaled such that the distance between the aligned landmarks
and predefined average face point positions is minimized. This process is
implemented using the accelerated iterative closest point algorithm (Besl
and McKay, 1992) and results in a normalized face image. The eye patches
are then extracted from the normalized face images as fixed-size rectangles
centered around the landmark points of the eyes.

Secondly, the head pose of the subject is found by adopting the state-of-
the-art method presented by Patacchiola and Cangelosi (2017). Compared
to the head pose estimation method presented in Section 3.1.3, the method
by Patacchiola and Cangelosi (2017) results in similarly accurate head pose
estimates while using only RGB images rather than RGB-D input (Patac-
chiola and Cangelosi, 2017, provide a detailed comparison). This provides
more flexibility; for example, the iCub eye cameras can now be used directly
for head pose and gaze estimation rather than requiring an external RGB-D
camera. It also allows the use of RT-GENE on webcams and laptop cameras.
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Figure 5.10: Image pairs show the original images of the subject wearing the eye-
tracking glasses (left) and the corresponding inpainted images (right).
The inpainted images look very similar to the subjects’ appearance at
testing time and are thus suited for training an appearance-based gazed
estimator.

5.5.1 Eye Gaze Estimation

Then the eye gaze vector is estimated using the proposed network. The eye
patches are fed separately to VGG-16 networks (Simonyan and Zisserman,
2015) which perform feature extraction. Each VGG-16 network is followed
by a fully connected (FC) layer of size 512 after the last max-pooling layer,
followed by batch normalization and ReLU activation. These layers are then
concatenated, resulting in an FC layer of size 1024. This layer is followed by
another FC layer of size 512. The head pose vector is appended to this FC
layer, which is followed by two more FC layers of size 256 and 2 respectively.
These layer sizes were determined experimentally. The outputs of the last
layer are the yaw and pitch eye gaze angles. The robustness is increased
using an ensemble scheme (Krizhevsky et al., 2017) where the mean of the
predictions of the individual networks represents the overall prediction.

5.5.2 Image Augmentation

The robustness of the gaze estimator is increased by augmenting the training
images in the following four ways. Firstly, to be robust against slightly off-
centered eye patches due to imperfections in the landmark extraction, ten
augmentations are performed by cropping the image on the sides and sub-
sequently resizing it back to its original size. Each side is cropped by a pixel
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value drawn independently from a uniform distribution U(0, 5). Secondly,
for robustness against camera blur, the image resolution was reduced to 1/2
and 1/4 of its original resolution, followed by a bilinear interpolation to re-
trieve two augmented images of the original image size. Thirdly, to cover var-
ious lighting conditions, histogram equalization is employed. Finally, color
images are converted to gray-scale images so that gray-scale images can be
used as input as well. This results in a total of fourteen image augmenta-
tions.

5.5.3 Training Details

The loss function is defined as the sum of the individual l2 losses between
the predicted and ground truth gaze vectors. The weights for the network es-
timating the head pose are fixed and taken from a pre-trained network (Pat-
acchiola and Cangelosi, 2017). The weights of the VGG-16 networks are ini-
tialized using a pre-trained network on ImageNet (Simonyan and Zisserman,
2015). As weight sharing resulted in decreased performance, it is not being
used. The weights of the FC layers are initialized using the Xavier initializa-
tion (Glorot and Bengio, 2010). The Adam optimizer (Diederik P. Kingma,
2015) is used with learning rate 0.001, β1 = 0.9, β2 = 0.95 and a batch size
of 256.

5.6 experimental evaluation

The evaluation of the architecture presented in this chapter is split into four
parts. Section 5.6.1 investigates the effectiveness of the proposed inpainting
algorithm. This is followed by an evaluation of the proposed gaze estimator
on several datasets including RT-GENE in Section 5.6.2. The cross-dataset
evaluations in Section 5.6.3 demonstrate that the estimators do not only per-
form well when evaluated on the testing set of the dataset that is used to
train the gaze estimator but also generalizes to other datasets. Finally, Sec-
tion 5.6.4 contains some qualitative results of the gaze estimation.

5.6.1 Dataset Inpainting Evaluation

The first set of experiments validate the effectiveness of the proposed in-
painting algorithm. The average pixel error of five facial landmark points
(eyes, nose and mouth corners) was compared to manually collected ground
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Figure 5.11: Left column: Original face images and landmarks found by MTCNN.
One can see that the landmark positions are not precise, which is due to
the dissimilarity to the images MTCNN was trained on. Middle column:
Inpainted face images and refined landmarks found by MTCNN. The
landmarks positions are now found accurately, which allows extracting
precise eye image patches. Right column: The top image shows the
extracted eye patch before inpainting, while the bottom image shows
the refined extracted eye patch. In the refined image patch, the location
of the eye center is estimated more accurately, and the yellow patches
of the glasses have been inpainted.

truth labels on a set of 100 images per subject before and after inpainting
(“original” vs. “inpainted” images). The results reported in Tables 5.3 and
5.4 confirm that all landmark estimation algorithms benefit from the inpaint-
ing, both in increased face detection rate and in lower pixel error. The perfor-
mance of the proposed inpainting method is also significantly higher than
a method that naively fills the area of the eyetracking glasses uniformly
with the mean color. Figure 5.11 shows qualitative results for the inpainting
method.

The landmark points were also extracted for images where the subject
does not wear the eyetracking glasses (“natural” images). Statistical analysis
using Wilcoxon signed-rank tests has shown that there is a statistical differ-
ence between the natural images and original images (p < .01), and between
the original images and inpainted images (p < .01). This was also the case
for the face detection rate between inpainted images and natural images
(p < .01). Importantly, however, there was no statistical difference of the
landmark extraction accuracy between the inpainted images where the face
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Table 5.3: Comparison of the Constrained Local Neural Fields (CLFN; Baltrusaitis
et al., 2013) and Ensemble Regression Trees (ERT; Kazemi and Sullivan,
2014) landmark detectors applied to the original images (with eyetracking
glasses), images where the eyetracking glasses are filled with a uniform
color (the mean color of the image), and images that were inpainted us-
ing the proposed semantic inpainting method. The face detection rate
improves significantly when inpainted images are provided as input to
the landmark detector. However, the detection rate does not achieve the
same accuracy as in natural images. The performance of MTCNN (Zhang
et al., 2016) is not reported, as it would be a biased comparison, given that
MTCNN was used to extract the face patches for this comparison.

Face detection rate (%)

Landmark detection method Original Uniformly filled Inpainted Natural

CLFN 54.6±24.7 75.4±20.9 93.3±10.0 98.7±2.9
ERT 36.7±25.3 59.7±23.0 89.5±13.9 97.6±5.5

Table 5.4: Similar comparison as in Table 5.3 but comparing the landmark error in
pixels rather than the face detection rate. The landmark error is signifi-
cantly reduced for the inpainted images compared to the original images.
Moreover, there is no statistical difference between the error for the in-
painted and natural images.

Landmark error (pixel)

Landmark detection method Original Uniformly filled Inpainted Natural

CLFN 6.0±2.4 5.6±2.3 5.3±1.8 5.0±2.7
CLFN in-the-wild 5.8±2.3 5.3±1.8 5.2±1.6 5.1±3.0

ERT 6.6±2.3 5.8±1.7 5.1±1.3 4.9±2.4

was detected and natural images (p = .16), which further validates the effec-
tiveness of the proposed inpainting method and supports the contribution
of the RT-GENE dataset.

5.6.2 Gaze Estimation Performance Evaluation

The proposed method is evaluated on two de facto standard datasets, MPII
Gaze (Zhang et al., 2015) and UT Multi-view (Sugano et al., 2014), as well as
the newly proposed RT-GENE dataset2.

2 There are no comparisons conducted using Eyediap dataset (Funes Mora et al., 2014) or the
dataset of Deng and Zhu (2017) due to licensing restrictions of these datasets.
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performance on the mpii dataset

First, the performance of the newly proposed gaze estimation network is
evaluated on the MPII Gaze dataset (Zhang et al., 2015). The MPII Gaze
dataset uses an evaluation set containing 1500 images of the left and right eye
respectively. As the proposed method employs both eyes as input, the 3000

images are directly used without considering the target eye. The previous
state-of-the-art achieves an error of 4.8 ± 0.7 degrees (Zhang et al., 2017)
in a leave-one-out setting. Figure 5.12 shows that the proposed method’s
accuracy is 4.3± 0.9 degrees (10.4% improvement).
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Figure 5.12: 3D gaze error on the MPII Gaze dataset. The proposed four-network
ensemble performs best. A single network achieves a performance com-
parable to the previous state-of-the-art method (CVPR2017W by Zhang
et al., 2017). However, applying an ensemble scheme to the CVPR2017W
method does not improve the performance as discussed further in the
text.

performance on the ut multi-view dataset

In evaluations on the UT Multi-view dataset (Sugano et al., 2014), the pro-
posed method achieves a mean error of 5.1 ± 0.2 degrees, performing fa-
vorably against the previously best performing method (Zhang et al., 2015)
by 13.6% (5.9 degrees error). These results demonstrate that the proposed
method achieves state-of-the-art performance on two existing datasets.

performance on the rt-gene dataset

In the third set of experiments, the gaze estimators’ performances are mea-
sured on the newly proposed RT-GENE dataset using 3-fold cross validation
as shown in Figure 5.13. All methods perform worse on RT-GENE compared
to the MPII Gaze and UT Multi-view datasets, which is due to the natu-
ral setting with larger appearance variations and lower resolution images
due to higher camera-subject distances. Using inpainted images at training
time results in higher accuracy compared to using the original images with-
out inpainting for all algorithms including the proposed algorithm (10.5%



92 gaze estimation in natural environments

performance increase). For the inpainted images, the proposed gaze estima-
tion network achieves the best performance with an error of 7.7 ± 0.3 de-
grees, which compares to the method of Zhang et al. (2015) with an error
of 13.4± 1.0 degrees (42.5% improvement) and the previous state-of-the-art
network (Zhang et al., 2017) with 8.7 ± 0.7 degrees error (11.5% improve-
ment). These results demonstrate that features obtained using the proposed
deep network architecture are more suitable for this dataset compared to the
previous state-of-the-art.

0

5

10

15

3
D

A
ng

ul
ar

Er
ro

r
(d

eg
re

es
)

14.910.010.0 8.6 13.4 8.7 8.7 7.7

} without
inpainting

} with
inpainting

Single eye CVPR2015

Spatial weights CNN CVPR2017W
Spatial weights CNN (ensemble)
Proposed: 4 network ensemble
Single eye CVPR2015

Spatial weights CNN CVPR2017W
Spatial weights CNN (ensemble)
Proposed: 4 network ensemble

Figure 5.13: 3D gaze error on the proposed RT-GENE gaze dataset. The inpainting
improves the gaze estimation accuracy for all algorithms. The proposed
method performs best with an accuracy of 7.7 degrees.

ensemble scheme evaluation

Furthermore, ensemble schemes were found to be particularly effective in
the RT-GENE architecture. For a fair comparison, the ensemble scheme was
also applied to the state-of-the-art method by Zhang et al. (2017). However,
there was no performance improvement over the single network (see Fig-
ure 5.12). This is due to the spatial weights scheme that leads to similar
weights in the intermediate layers of the different networks. This, in turn, re-
sults in similar gaze predictions of the individual networks, and therefore an
ensemble scheme does not improve the accuracy for this particular method.

5.6.3 Cross-Dataset Evaluation

To further validate whether the RT-GENE dataset can be applied in a variety
of settings, the proposed ensemble network was trained on samples from
the RT-GENE dataset (all subjects included) and tested on the MPII Gaze
dataset (Zhang et al., 2015). This is challenging, as the facial appearance and
image resolution is very different as shown in Figures 5.7, 5.9 and 5.14. This
resulted in an accuracy of 7.7± 1.3 degrees, which outperforms the currently
best performing method in a similar cross-dataset evaluation (Wood et al.,
2016, 9.9 degrees error, 22.4% improvement). The proposed method also out-
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Figure 5.14: Sample estimates (red) and ground truth annotations (blue) using the
proposed method on the dataset (Zhang et al., 2015) (left) and the pro-
posed RT-GENE dataset (right). The RT-GENE dataset is more challeng-
ing, as images are blurrier due to the higher subject-camera distance
and show a higher variation in head pose and gaze angles.

performs the method of Shrivastava et al. (2017, 7.9 degrees error), which
uses unlabeled images of the MPII Gaze dataset at training time, while the
proposed method uses none.

To investigate whether the reported improvements are due to the pro-
posed gaze estimator or the new RT-GENE dataset, an ensemble network
was trained on the UT Multi-view dataset (all subjects and head poses in-
cluded) instead of RT-GENE as above and this ensemble was then evaluated
on the MPII Gaze dataset. Therefore, the same estimator is used to train
the ensemble, and the only difference is the employed dataset for training
(UT Multi-view vs. RT-GENE). For the ensemble trained on UT Multi-view,
the angular error is 8.9 ± 1.5 degrees, compared to an error of 7.7 ± 1.3
degrees for the ensemble trained on RT-GENE. This confirms that while
the proposed gaze estimator leads to an improved performance overall, the
RT-GENE dataset is of importance for the generalization capability of the
ensemble networks.

5.6.4 Qualitative Results and Practical Application

Figure 5.14 shows some qualitative results of the proposed method applied
to the MPII Gaze and RT-GENE datasets. The framework can be used for
real-time gaze estimation using any RGB or RGB-D camera such as Kinect,
webcam, laptop and the iCub eye cameras. The framework runs at 25.3 fps
with a latency of 0.12s using an Intel i7-6900K@3.2GHz with a Nvidia 1070

and 64GB RAM.
The best results in practical settings are achieved when the proposed

framework is trained using multiple datasets, e. g. the RT-GENE and MPII
datasets. One reason is that in this case samples where the subject is in very
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close distance to the camera (MPII dataset) are merged with samples where
the distance is much larger (RT-GENE dataset). This allows application of
the framework in an even wider range of distances compared to just using
samples from the RT-GENE dataset for training. Furthermore, the perfor-
mance of the framework is usually harmed for subjects that wear eyeglasses
to correct their vision, as the RT-GENE dataset does not contain subjects
wearing eyeglasses. This problem is avoided as the MPII dataset contains
some subjects that wear eyeglasses, and thus the gaze estimator can learn to
extract features and estimate the gaze accurately even for these subjects.

5.7 conclusions

This chapter proposed RT-GENE, a novel approach for ground truth gaze
estimation in natural settings. A new challenging dataset was collected us-
ing this approach, and it was demonstrated that the dataset covers a wider
range of camera-subject distances, head poses and gazes compared to previ-
ous in-the-wild datasets. It was also demonstrated that semantic inpainting
using GAN can be used to overcome the appearance alteration caused by
the eyetracking glasses during training. The proposed deep convolutional
network achieved state-of-the-art gaze estimation performance on the MPII
Gaze dataset (10.4% improvement), UT Multi-view (13.6% improvement),
the proposed RT-GENE dataset (11.5% improvement), and in cross-dataset
evaluation (22.4% improvement). Overall, RT-GENE allows for accurate gaze
estimation in scenarios where the head pose of the subject previously ap-
proximated the gaze. The RT-GENE dataset and code are available for down-
load: https://www.imperial.ac.uk/personal-robotics/software/.

The proposed inpainting method could be applied to bridge the gap be-
tween training and testing in settings where wearable sensors are attached
to a human (e. g. Electroencephalography (EEG), Electromyography (EMG)
and Inertial Measurement Unit (IMU) sensors). Another interesting scenario
could be the inpainting of augmented/virtual reality devices. One require-
ment of the inpainting is the masking of the area to be inpainted, which
requires precise pose estimates. As augmented/virtual reality devices pro-
vide pose estimates using external sensors (e. g. HTC Vive3, Oculus Rift4) or
SLAM (e. g. Microsoft Hololens5), the proposed inpainting method could be
easily applied.

3 https://www.vive.com/
4 https://www.oculus.com/rift/
5 https://www.microsoft.com/en-us/hololens/

https://www.imperial.ac.uk/personal-robotics/software/
https://www.vive.com/
https://www.oculus.com/rift/
https://www.microsoft.com/en-us/hololens/
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Future works will investigate gaze estimation in situations where the eyes
of the participant cannot be seen by the camera, e. g. for extreme head poses
or when the subject is facing away from the camera (in this instance, the eyes
cannot be seen by the camera). As the RT-GENE dataset collection method
allows annotation of gaze even in these diverse conditions, it would be inter-
esting to explore algorithms which can handle these challenging situations.
One hypothesis is that the saliency information of the scene could prove
useful in this context, as humans are inclined to look at salient objects. The
framework could then be used for intention recognition, where the inferred
3D gaze position could be used as a cue. These research directions are dis-
cussed further in Section 7.2.3.
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6
E M B O D I E D T R A N S F O R M AT I O N A S C O M P U TAT I O N A L
M O D E L F O R P E R S P E C T I V E TA K I N G

This chapter addresses the last research question:

“How can perspective taking be modeled from a computational
point of view, and how do the model’s outputs compare to data
from experiments with humans?”

Chapter 3 introduced an artificial visual system that allows a robot to take
the perspective of a human and used this ability to make well-informed
decisions given a human’s speech command. This chapter investigates the
mechanisms that underlie perspective taking in humans by developing a
computational model and comparing the model responses with human re-
sponses. Importantly, the computational model also provides testable pre-
dictions that can be experimentally validated in future psychological studies
with humans.

This chapter is an extended version of the research that has been previ-
ously published in Fischer and Demiris (2018).

6.1 motivation

The socio-cognitive skills of the human brain are the product of prolonged
childhood development (Heckman, 2006; Herrmann et al., 2007), where fun-
damental skills such as a theory of mind (Premack and Woodruff, 1978; Sur-
tees et al., 2013b) and a capacity for perspective taking (Kessler and Thomson,
2010; May, 2004; Michelon and Zacks, 2006) are developed. Possessing a the-
ory of mind implies being aware that other people’s visual and mental states
differ from one’s own (Frith and Frith, 1999). This requires an understand-
ing of how the physical space is perceived from the viewpoint of another
person (Flavell, 1977), which is referred to as perspective taking (Michelon
and Zacks, 2006; Salatas and Flavell, 1976) as discussed in Chapter 1 of the
thesis. Together these skills are used to analyze and infer the intentions of
others (Blakemore and Decety, 2001).

One hypothesis, known as the embodied transformation account (Kessler
and Thomson, 2010, see Section 2.5.3), suggests that perspective taking (PT)

97
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is the mental simulation of the physical rotation or translation necessary to
acquire another perspective. Moreover, the body representations used for
the mental simulation are identical to the ones used for physical movement.
In other words, PT emerges as a variation of physical movements that are
simulated rather than executed.

Several works have endorsed this hypothesis and provided support in
terms of psychological (Kessler and Thomson, 2010; Kessler and Wang, 2012;
Surtees et al., 2013b; Watanabe, 2016; Yu and Zacks, 2017) and neurophys-
iological (Gooding-Williams et al., 2017; Wang et al., 2016) data. However,
the hypothesis has not yet been investigated using a computational model
which represents a concrete implementation of the hypothesis. This chap-
ter introduces such a model and shows an implementation of the model on
a simulated robot platform in order to systematically test this hypothesis
computationally.

The chapter advocates that PT is governed by a competition process for
visual attention that selects action primitives that should be passed through
the forward model. The forward model predicts the agent’s state given the
current state and a (mentally simulated) action primitive that acts as a motor
input (Demiris and Hayes, 2002). As the forward model is recurrently exe-
cuted, an internal (mental) representation of the simulated state is required.
The model explains the response times of humans in PT experiments that
contain the following variations: 1) the angular disparity between the self-
agent and target agent, 2) the body posture of the self-agent, and 3) the
body posture of the target agent. On account of the computational formal-
ization, the model provides further explanation of the precise mechanisms
of embodied simulation and generates predictions to be tested in further ex-
perimental psychology studies. Specifically, the predictions state that forced
early responses lead to an egocentric bias and that habituation effects occur
when the imagined movement direction of the previous trial matches that of
the current trial.

The chapter is structured as follows. Section 6.2 provides a formalization
of perspective taking using two simulated iCub robots. Then, Section 6.3 de-
tails the experimental setup and justifies the parameter choices. Section 6.4
discusses the proposed computational model as a model for human PT
mechanisms. It provides qualitative and quantitative comparisons to a va-
riety of experiments that were conducted with human subjects. The model
offers several testable predictions that are presented in Section 6.5. Finally,
Section 6.6 concludes this chapter.
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6.2 computational formalization of perspective taking

This section formalizes visual PT as an embodied simulation of physical
movements using a set of action primitives that are passed through a for-
ward model. It also introduces a visual attentional mechanism that improves
computational efficiency by favoring the execution of previously employed
action primitives. This will be shown to be essential to explain the response
times of humans in PT tasks in Section 6.4.

An overview of how computational formalization of perspective taking is
achieved is as follows (refer to Figure 6.1). The self-agent and target agent
are represented by states that contain the torso pose, head pose and eye
gaze of the respective agents (Section 6.2.1). A forward model outputs a
state estimate given the current state and an action primitive to be executed
(Section 6.2.2). The embodied perspective taking process is implemented so
that the self-agent mentally aligns its perspective with that of the target
agent. This is implemented by executing the forward model for all action
primitives and choosing the primitive that results in the lowest expected
distance between the self-agent and target agent (Section 6.2.3). The distance
is a weighted average with two terms: one where the torso, head and eye
angles of the self-agent and target agent have to match individually, and
another where only the final gaze direction is considered (Section 6.2.4). The
model’s response time corresponds to the number of forward model passes.
An attentional component reduces the response time by selecting a subset
of action primitives to be passed through the forward model, rather than
executing all action primitives (Section 6.2.5).

6.2.1 Visual Perspective and Agent States

The two agents, namely the self-agent and target agent, are represented by
the states z(k) and ẑ(k) respectively. In Chapter 3 the state was approxi-
mated by the head pose, and Chapter 5 extended it by the eye gaze of the
agent. Within this chapter, the agent embodiment is taken further and the
torso pose is also considered, thus head pose, eye gaze and torso pose are
collectively considered as the perspective of an agent. The incorporation of
the torso pose in what is termed perspective is required as the torso pose
impacts the response times of the model, which is further detailed in Sec-
tion 6.2.4 and experimentally shown in Sections 6.4.2 to 6.4.4.

More formally, an agent state z(k) = {z0(k), ..., zN−1(k)} is composed of
N joint states. As the planar problem is considered, each zn(k) contains two
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Figure 6.1: One instantiation of the computational model. The forward model f is
used to provide state estimates z ′i(k + 1) for the self-agent given the
current state z(k) and an action primitive ui. In the first phase of this
model instance, u1 and u2 are contained in an attentional set (blue box)
and fed into the forward models. The state estimates are compared to the
target agent’s state ẑ, resulting in the distances d1(k+ 1) and d2(k+ 1).
If none of these distances are smaller than d(k), then a second phase
ensues (orange box). The primitive u∗(k+ 1) that results in the lowest
distance is mentally executed.

translational components xn(k) and yn(k), and one rotational component
θn(k). All components are relative to the parent joint n− 1 and joints are
defined for the torso (root joint, n = 0), head (n = 1), and eyes (n = 2). As
the self-agent perceives the world from an egocentric perspective, all compo-
nents of the torso’s joint state are 0: z0 = 0. Furthermore, for simplicity, the
head and eye joints remain in a fixed position with respect to the torso and
can only rotate in place, thus x1 = y1 = 0 and x2 = y2 = 0.

6.2.2 Forward Model and Action Primitives

The architecture makes extensive use of the forward model f
(
z(k), ui(k)

)
,

which provides the (simulated) predicted state z ′i(k+ 1) given the current
state z(k) of the self-agent and a motor input ui(k) at iteration k. The for-
ward model is known thanks to the predefined kinematic model of the robot
provided by the simulator. The motor inputs {ui | ui ∈ U} are implemented
as action primitives (move forward, move left, rotate torso left, etc.) of 0.1
units of translation or 10 degrees of rotation. A full list of all action primi-
tives can be found in Table 6.1.
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Table 6.1: This table contains a list of all action primitives, along with their impact
on the state of the robot. While the architecture has been shown to be
robust against the precise choice of action primitives, within the thesis
the following primitives have been chosen. Primitive 1: no movement;
primitives 2–5: translational movement in either direction; primitives 6–
9: combinations of the translational movements; primitives 10–15: rota-
tional movement of each individual joint in either direction; primitives
16–19: combinations of the rotational movements; primitives 20 and 21:
some combinations of translational and rotational movements that may
frequently occur.

Action primitive name Index ∆x0 ∆y0 ∆θ0 ∆θ1 ∆θ2

No move 1 0 0 0 0 0

Move forward 2 +0.1 0 0 0 0

Move backward 3 −0.1 0 0 0 0

Move left 4 0 +0.1 0 0 0

Move right 5 0 −0.1 0 0 0

Move forward left 6 +0.1
√
2/2 +0.1

√
2/2 0 0 0

Move forward right 7 +0.1
√
2/2 −0.1

√
2/2 0 0 0

Move backward left 8 −0.1
√
2/2 +0.1

√
2/2 0 0 0

Move backward right 9 −0.1
√
2/2 −0.1

√
2/2 0 0 0

Rotate torso left 10 0 0 +10 0 0

Rotate torso right 11 0 0 −10 0 0

Rotate head left 12 0 0 0 +10 0

Rotate head right 13 0 0 0 −10 0

Rotate eyes left 14 0 0 0 0 +10

Rotate eyes right 15 0 0 0 0 −10

Rotate torso left without head 16 0 0 +10 −10 0

Rotate torso right without head 17 0 0 −10 +10 0

Rotate torso and head left 18 0 0 +10 +10 0

Rotate torso and head right 19 0 0 −10 −10 0

Move forward left rotate right 20 +0.1
√
2/2 +0.1

√
2/2 −10 0 0

Move forward right rotate left 21 +0.1
√
2/2 −0.1

√
2/2 +10 0 0

The goal of the self-agent is to mentally adopt the visual perspective of
the target agent, ẑ, which is assumed to be static and known (the obtention
of the target agent’s perspective is discussed in Chapter 5). One could argue
that knowing ẑ is all what it takes to solve the PT task, however this is not
the case – knowing ẑ means that the gaze direction (along with the config-
uration of the other joints) is known, however only the mental adoption of
this viewpoint allows the self-agent to infer how the world is perceived from
this perspective.

The motor inputs are inhibited from being sent to the motor system, which
results in a feed-forward control system. Hence, this suggests that there is a
visuospatial memory representation of the mentally transformed self, which
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is updated over time in a simulation loop. In other words, the predicted
output z ′(k+ 1) is used as input z(k+ 1) at iteration k+ 1.

6.2.3 Distance Metric and Control Policy

The distance metric d
(
z(k), ẑ

)
is defined so that:

d
(
z(k), ẑ

)
= dS

(
z(k), ẑ

)
+ dθ

(
z(k), ẑ

)
, (6.1)

where dS is the Euclidian distance between the translational components
of the root joints of the self-agent (z0(k)) and target agent (ẑ0), and dθ is
a measure of the angular disparity between the agents (further details are
provided in Section 6.2.4).

The aim is to find a control policy u∗(k) = π
(
z(k), f

)
that minimizes d,

such that d
(
z(k), ẑ

)
< d

(
z(k− 1), ẑ

)
, ∀k < kgoal and d

(
z(kgoal), ẑ

)
< ε,

where ε is a distance threshold acting as termination criterion, and kgoal

is the iteration (point in time) where the estimated distance falls below this
threshold. The control policy π is chosen such that the optimal action primi-
tive u∗(k) is found by executing the forward model f for all action primitives
and choosing the primitive ui that results in the lowest expected distance:

u∗(k+ 1) = arg min
ui

d
(
f
(
z(k), ui

)
, ẑ
)

, (6.2)

and stop the process once d
(
z(kgoal), ẑ

)
< ε.

6.2.4 Alignment Strategy

In the visuospatial perspective taking literature, it thus far remains unclear
to which frame of reference the self-agent aligns the perspective to, and
whether each joint is individually matched, or a combination of the refer-
ence frames is matched (Alsmith et al., 2017). For instance, several body
configurations enable an agent to look in the same direction – the direction
of the torso does not impact the perceived environment as long as the head
and eyes remain in the same configuration. The question is thus whether the
perspective taker aligns the perspective such that the torso, head and eye
angles all match

(
z(kgoal) ≈ ẑ

)
, or so that only the final gaze direction is
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considered. Hence, the weighted average with mixing parameter 0 6 ω 6 1

is introduced such that:

dθ
(
z(k), ẑ

)
= (1−ω)dI

(
z(k), ẑ

)
+ωdΣ

(
z(k), ẑ

)
, with (6.3)

dI
(
z(k), ẑ

)
=

N−1∑
n=0

∣∣∣θn(k) − θ̂n(k)∣∣∣, and (6.4)

dΣ
(
z(k), ẑ

)
=

∣∣∣∣∣∣
N−1∑
n=0

θn(k) −

N−1∑
n=0

θ̂n(k)

∣∣∣∣∣∣ (6.5)

while ensuring that all angle differences are in the interval [−π,π ]. Therefore,
an agent with ω = 0 matches each joint individually to those of the target
agent (note that this is task irrelevant in PT tasks), whereby an agent with
ω = 1 considers only the final gaze direction.

6.2.5 Response Time and Attentional Component

This section introduces an attentional component to reduce the response
time of the proposed model. The response time C is defined as the number
of forward passes that are executed. In other words, for each action primitive
that is considered, the response time increases by 1.

To reduce the response time, an attentional component selects a subset
A(k) ( U of action primitives to be passed through the forward model at
iteration k (rather than passing all action primitives ui ∈ U). The selection
is governed such that the action primitive u∗(k − 1) that was executed at
the previous iteration becomes one element of A(k). The other elements are
selected randomly1.

The action primitives that are not included in the attentional set
(
uj /∈A(k)

)
are only executed if no suitable action primitive is found within A(k) (i. e.
none of the initially executed primitives reduced d). Therefore, the number
of forward passes per iteration equals the number of attentional components
|A| in case a suitable action primitive is found, or the total number of action
primitives |U| if no suitable action primitive is found within A(k).

1 Two additional comparisons for other scheduling mechanisms were performed. In one com-
parison, the other elements are based on the similarity of the action primitives ui. For exam-
ple, the primitives ‘rotate torso left’ and ‘rotate head left’ have a high similarity, while ‘move
forward’ and ‘move backward’ have low similarity. In the other comparison, a round robin
scheduling was used. For both comparisons, no significant differences where found. Other
knowledge-based scheduling mechanisms that might reduce the model’s response time fur-
ther will be investigated in future works.
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Figure 6.2: Experimental setup. The task of the blue robot is to take the perspective
of the gray robot, and to decide whether one of the objects (e. g. the
orange) is to the left or right as perceived by the gray robot. The images
on the top and bottom left show the scene as perceived by the blue and
gray robot respectively. Bright green arrows indicate the torso’s pose,
and dark green arrows the head pose.

6.3 experimental evaluation

This section investigates the properties of the computational model applied
to two simulated iCub humanoid robots in a visual PT task. Simulated rather
than physical robots were more suitable for this study, and are chosen for the
following reasons. Firstly, using simulated robots allows a large-scale system-
atic evaluation of the model. The following comparisons contain variations
in the experimental setup (such as the angular disparity and the postures
of both agents) and contain ablation studies that require variations in the
parameter values. Taken together, this requires many trials to achieve statis-
tical significance, which is hard to achieve on the physical robot. Secondly,
the simulation is repeatable and replicable. Given the parameter values and
the random seed that was used, the same results can be obtained repeatedly.

6.3.1 Experimental Setup

As shown in Figure 6.2, the two robots are placed in a scenario where two
objects are positioned on a table top. The task of one of the robots (self-
agent, blue) is to mentally adopt the perspective of the other static robot
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(target agent, gray) and to decide whether an object is to the left or right of
the target agent. The left/right judgments are made based on the angle to
the object, akin to Equation (3.11). A typical setup from experiments with
humans (Kessler and Thomson, 2010) is replicated as closely as possible so
that comparisons can be drawn. That is, the perspective difference between
the two robots is varied, and so are the body postures of the robots. The
perspective difference (angular disparity) is varied according to the human
data that the model is compared with, and is detailed within each section.
The response time serves as the primary evaluation metric.

6.3.2 Parameter Choices

The parameter values were experimentally determined as follows.

6.3.2.1 Mixing Parameter

The mixing parameter ω (defining whether each joint is matched individ-
ually or only the final gaze direction is considered, see Section 6.2.4) was
drawn from two random distributions depending on the number of male
and female subjects in the respective experiment: ωmales∼N(0.95, 0.029) for
males and ωfemales∼N(0.91, 0.065) for females2. These distributions are cho-
sen based on comparisons with human response times and are further dis-
cussed and justified in Section 6.4.4.

6.3.2.2 Speed-Accuracy Trade-Off

The parameter ε governs a speed-accuracy trade-off. The larger ε, the larger
the remaining distance between the two agents and the earlier the mental
simulation is stopped, but the higher the chance of an incorrect response.

Figure 6.3 visualizes the response times and accuracies with ε as the
independent variable. The data originates from 24 model instances (cor-
responding to 24 subjects in Michelon and Zacks, 2006), and each of the
model instances solves PT tasks with angular disparities θ ∈ {45, 90, 135, 180},
whereby four trials were executed per angular disparity.

In the following experiments, ε was set such that the model’s error rate is
below 1.0% (ε = 1.5), which is in line with human data where error rates are
between 1.0% and 5.0% (see e. g. Kessler and Thomson, 2010; Michelon and
Zacks, 2006).

2 A threshold was put in place such that 0 6 ω 6 1.
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Figure 6.3: This figure depicts the speed-accuracy trade-off. The response times and
error rates are shown with ε as the independent variable, whereby ε
is the termination criterion as described in Section 6.2.3. While larger ε
reduce the response time, the error rate increases and approaches the
level of chance (0.5). The response time is the mean response time of
all responses where the angular disparity was larger than zero (as for
zero degrees angular disparity no mental rotation is necessary, and thus
the accuracy approaches 1) and the shaded area depicts the standard
deviation for the 24 model instances.

6.3.2.3 Size of Attentional Set

Figure 6.4 shows how the mean response time varies depending on the num-
ber of models contained within A. There were 24 model instances ∀ |A| ∈
{1, . . . , 18}. The angular disparities were varied between 0 and 180 degrees
in 45-degree steps, and four trials were executed per angular disparity. The
figure also shows the response time when the attentional component was
disabled (depicted as |A| = 0).

One can observe that there is a minimum for |A| = 4with a mean response
time of C4 = 118.0. The mean response times for three and five attentional
models are very similar (C3 = 119.6 and C5 = 119.4 respectively), while
the response times are increasing for |A| < 3 and |A| > 5. Without using
the attentional component, the mean response time is C0 = 197.8, and this
response time is also approached when all action primitives are contained
in the attentional set (|U| = |A| = 18), which is equivalent to not using the
attentional component (C18 ≈ C0).

All further results in this chapter are reported for |A| = 4 attentional com-
ponents, except when it is explicitly stated that the attentional component
was disabled.
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Figure 6.4: This figure shows the mean response time depending on the size of
the attentional set A. The minimum mean response time is achieved for
|A| = 4, while the response time is increasing for less or more than 4
attentional modules. The shaded area depicts the standard deviation for
the 24 model instances.

6.4 a model of human perspective taking mechanisms

This section discusses the proposed computational model as a model for hu-
man level two perspective taking (PT2) mechanisms. Humans are targeted
as many studies suggest that other primates are not capable of PT2 (see e. g.
Anderson et al., 1996; Karg et al., 2016; Kummer et al., 1996). The model
suggests that humans simulate physical movements when taking the per-
spective of others.

The model is validated by comparing the response time profiles obtained
using the model with those from humans in psychology studies. There, the
human subjects are typically presented with stimuli on a photograph (Mich-
elon and Zacks, 2006), screen (Kessler and Rutherford, 2010; Kessler and
Thomson, 2010; Kessler and Wang, 2012) or virtual reality environment (Der-
oualle et al., 2015; Kockler et al., 2010) where another human (or avatar) is
also sitting at a table. Two or more objects are located on the table, and the
subject’s task is to respond as quickly and accurately as possible whether
the target object is to the other human’s left or right.

Note that there are significant variations in the response times of hu-
mans depending on the specific setup (see e. g. Kessler and Rutherford, 2010,
where the impact of the response modality is investigated). Also, while the
model’s response time only takes the time of the mental simulation into ac-
count (the response time equals the processing time), the human’s response
time includes the time to perceive the stimulus, the mental simulation, the
decision time, the motor execution time and so forth. Therefore, the follow-
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Figure 6.5: The response times of the computational model (dark, solid lines) are
compared to experimental data in humans (bright, dashed lines, data
from Michelon and Zacks, 2006). For both human and model data is
was found that there is a linear relationship between angular disparity
and response times.

ing comparisons focus on the response time profiles rather than comparing
the absolute values.

Furthermore, there are substantial differences across individuals in hu-
mans. Most psychological studies report the standard error rather than the
standard deviation3. The following figures show the standard error for hu-
man data while showing the standard deviation for model data. This deci-
sion was made as the model’s standard error is typically close to zero, while
still showing considerate variations from the mean. The model’s response
times have been scaled so that model and human data can be easily com-
pared.

All experiments were replicated so that the number of model instances
matches the number of subjects in the experiments with humans (details
are provided within the respective sections). For each model instance, the
mixing parameter ω was randomly drawn from a Gaussian distribution as
further described in Section 6.4.4. For each trial, the models that are initially
contained in the attentional set is randomly chosen.

6.4.1 Response Time Variation with Angular Disparity

The response times of humans in PT tasks grow linearly with the angular
disparity between the self and the target agent (Kessler and Thomson, 2010;

3 The standard error measures how far the sample mean of the data is from the population
mean, while the standard deviation measures the variability of the sample data from the
sample mean.



6.4 a model of human perspective taking mechanisms 109

(a) Congruent movement (b) Straight (c) Incongruent movement

Figure 6.6: Movement congruency schematic. The required mental rotation is clock-
wise for all examples. In (a), the self-agent’s (blue robot) torso is also
rotated clockwise, which is considered as congruent. This is opposed to
(c), where the self-agent’s torso is rotated counterclockwise and hence
the movement direction and torso rotation are incongruent. As shown
in (b), a straight body posture is used as baseline.

Michelon and Zacks, 2006; Surtees et al., 2013b). Michelon and Zacks (2006)
were the first to show this effect by varying the angular disparity between
the self and other between 0 degrees and 180 degrees in 45-degree steps.
The first comparison, shown in Figure 6.5, validates that the model response
time also grows linearly with the angular disparity (t-test, p < 0.01) and that
there is a good qualitative agreement between model and human data for
all angular disparities

(
θ ∈ {0, 45, 90, 135, 180}

)
.

There is an interesting observation to make: the model’s standard devia-
tion (across the 24 model instances with 4 trials per angular disparity per
model) increases with the angular disparity. This has various reasons, with
the predominant reason being the random choice of the models contained
in the attentional set. Indeed, the standard deviation is not significantly dif-
ferent for different angular disparities if the attentional component is not
used.

6.4.2 Movement Congruence

The following sections investigate whether the model also matches human
data when introducing several experimental variations. The first variation
follows Experiment 1 in Kessler and Thomson (2010) and is concerned with
the movement congruence. In human data (Figure 6.7, right), body postures
that are congruent with the required movement direction (torso pose and
movement direction are both clockwise or both counterclockwise; see Fig-
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Figure 6.7: The response times with respect to movement congruence of the com-
putational model (left) are compared to experimental data in humans
(right, data from Kessler and Thomson, 2010, Experiment 1). In both the
model and human data, the movements where the self-agent’s posture
is aligned with the movement direction lead to faster response times
than movements where the self-agent starts with a straight posture, and
incongruent movements are the slowest. These differences are more pro-
nounced for larger angular disparities in both human and model data.
Note that for 0 degrees angular disparity (i. e. judging the egocentric
perspective), there is no congruent case. As the target agent’s torso pos-
ture is straight, a torso rotation of the self-agent to either side leads to
an incongruent movement (arguably, the straight body posture could be
considered congruent).
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Figure 6.8: Comparing movement congruence as in Figure 6.7, but using human
data from another study (Kessler and Rutherford, 2010, Experiment 1).
Dark, solid lines correspond to model data, whereas the bright, dashed
lines indicate human data.
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ure 6.6 for a schematic) lower the response time compared to straight body
postures, while incongruent postures result in increased response times. Fur-
thermore, the differences between congruent and incongruent body postures
are more pronounced for larger angular disparities.

Figure 6.7 (left) shows the model’s response times4. As for the human data,
there are significant differences between straight, congruent and incongruent
postures (t-test, p < 0.01). However, the t-test was significant even for 0
degrees, which is contrary to the data reported by Kessler and Thomson
(2010).

There is another notable difference for the 0-degree disparity case: while
the model data suggests that the response time should be lower compared
to 40 degrees angular disparity, the human data indicate that the response
times for 0 and 40 degrees do not significantly differ. As discussed in Sec-
tion 2.5.3, Janczyk (2013) argue that this might be due to the usage of a visual
matching strategy for small angular disparities. Also note that the response
times for 0 and 45 degrees differ significantly in the human data collected by
Michelon and Zacks (2006, see Figure 6.5). Furthermore, the human experi-
mental data contained in the next sections do not contain data for 0 degrees,
such that this effect currently cannot be examined further.

Figure 6.8 shows another comparison with other subjects and a slightly dif-
ferent experimental setup (with different angular disparities, following the
experimental setup in Kessler and Rutherford, 2010, Experiment 1). There
is a good qualitative match between human and model data for congruent
movements, while for incongruent movements there is a slight discrepancy
for 110 degrees angular disparity.

6.4.3 Posture Congruence

Kessler and Thomson (2010) also investigate the impact of the target agent’s
body posture (Experiment 4 in Kessler and Thomson, 2010). While in the
previous section movement congruence indicated whether the self-agent’s
body posture was congruent with the movement direction towards the target
agent, posture congruence in this section indicates whether the self-agent’s
body posture and the target agent’s body posture match (see Figure 6.9).
In other words, if the self-agent’s torso is rotated clockwise and the tar-
get agent’s torso is also rotated clockwise, then the posture is congruent

4 To replicate the experimental setup in Kessler and Thomson, 2010 (Experiment 1), 24 model
instances were created. There were 12 trials per angular disparity

(
θ ∈ {0, 40, 80, 120, 160}

)
for

each model instance.
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(a) Congruent posture (b) Incongruent posture

Figure 6.9: Posture congruency schematic. In (a), both the self-agent’s (blue robot)
and target agent’s (gray robot) torso are rotated clockwise, which is con-
sidered as congruent posture. This is opposed to (b), where the self-
agent’s torso is rotated clockwise while the target agent’s torso is rotated
counterclockwise (incongruent posture).

(and similarly for counterclockwise rotations). In human data, the impact is
smaller compared to that of the movement congruence, and there is only a
small effect for 120 and 160 degrees angular disparity (but not for 40 and 80
degrees).

In the computational model, the mixing parameter ω controls the im-
pact of the target agent’s posture on the response times. The smaller ω, the
higher the impact as each joint state is individually matched. On the other
hand, a large ω leads to a small impact as the combination of all states is
matched. For this experiment, the mixing parameter was randomly drawn
from ωfemales∼N(0.91, 0.065) for 12 model instances (corresponding to the 12

female subjects in Kessler and Thomson, 2010) and ωmales∼N(0.95, 0.029) for
the remaining 12 instances (corresponding to the 12 male subjects in Kessler
and Thomson, 2010). The choice of the mean and variance for these distribu-
tions is justified in the next section. There were 16 trials per angular disparity(
θ ∈ {40, 80, 120, 160}

)
for each model instance.

Figure 6.10 compares the model and human response times for the body
posture congruence. As there is a good qualitative match for the response
times, the model suggests that the cost function for the angular disparity is
heavily biased towards dΣ in humans, i. e.ω is close to 1. In other words, the
model indicates that joint states are not matched individually, but instead as
a combination of all states. The next section discusses this indication in more
detail.
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Figure 6.10: The response times with respect to posture congruence of the compu-
tational model (dark, solid lines) are compared to experimental data in
humans (bright, dashed lines, data from Kessler and Thomson, 2010,
Experiment 4). There is a good qualitative match of the model and hu-
man data for both congruent as well as incongruent postures.

6.4.4 Differences by Sex and Social Skills

Kessler and Wang (2012) have investigated whether there are differences in
the perspective taking strategy employed by males and females, and depend-
ing on their social skills score. They suggest that there are different groups
of perspective takers: “embodiers” (typically female, highly socially skilled
individuals) that employ a mental rotation strategy and “systemizers” (typi-
cally male individuals with low social skills) who use alternative strategies.

6.4.4.1 Embodiment Measure

Kessler and Wang (2012) introduced the embodiment measure E to analyze
the perspective taking strategy that was employed by different individuals
and groups. They propose that E measures the “proportion of the body
schema that is mentally transformed”. Within this thesis, the measure is
used to compare model and human responses.

The measure E is defined as the (average) difference of the z-scores for
incongruent (M = 0) and congruent (M = 1) movements at θ = 120 degrees
and θ = 160 degrees of angular disparity5:

E =
(z120,0 − z120,1) + (z160,0 − z160,1)

2
. (6.6)

5 Samples with θ = 40 and θ = 80 are not used as a visual matching strategy might have been
employed at these small angles.
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The z-score measures how many standard deviations σC a response time
Cθ,M is from the overall mean µC, and is defined as6:

zθ,M =
Cθ,M − µC

σC
. (6.7)

In the study conducted by Kessler and Wang (2012), most subjects (81 out
of 96) had a positive embodiment measure. That is, response times of con-
gruent movements were faster than these of incongruent movements. Kessler
and Wang (2012) have shown that there is a significant relationship between
sex and embodiment as well as a social skills score and embodiment.

6.4.4.2 Link Between Mixing Parameter and Embodiment Measure

From the computational model’s perspective, the hypothesis is that the mix-
ing parameter ω has a negative correlation with the embodiment measure.
This directly follows the definition in Equation (6.3), where a higher ω leads
to a lower proportion of the body schema that is mentally transformed and
vice versa. The hypothesis was tested as follows. The model was instanti-
ated 96 times (as many model instantiations as subjects in Kessler and Wang,
2012), withωfemales∼N(0.91, 0.065) for 51 instances andωmales∼N(0.95, 0.029)
for the remaining 45 instances. The means and standard deviations for the
Gaussian distributions were chosen so to closely follow the human data as
described in Section 6.4.4.3. In Figure 6.11 it is shown that there is a strong
negative correlation betweenω and the embodiment measure E (R2 = 0.697).

6.4.4.3 Comparison of Embodiment Measure for Human and Model Data

The parameters of the normal distribution for the mixing parameter ω were
chosen so that the embodiment scores E in humans are resembled as closely
as possible. This is achieved qualitatively by choosing the mean and stan-
dard deviation so that model and human instances have similar embodiment
scores as shown in Figure 6.12. This resulted in ωfemales∼N(0.91, 0.065) for
51 instances and ωmales∼N(0.95, 0.029) for the remaining 45 instances.

It was then validated whether the embodiment measures of the human
and model data were drawn from different distributions using two-sided
Kolmogorov-Smirnov tests. The validation was performed for three groups:
females, males, and the combined data. The statistical tests have shown that
there are differences between human and model data for males (p = .048)
and the combined group (p = .01), but not for females (p = .089).

6 Following Kessler and Wang (2012), all angles (including θ = 40 and θ = 80) are used to
calculate the overall mean µC and standard deviation σC.
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Figure 6.11: This figure visualizes the negative correlation between the mixing pa-
rameter ω and the corresponding embodiment measure E in the com-
putational model. As detailed in the main text, the “female” and “male”
samples have different underlying distributions. The green line indi-
cates the linear regression line.

However, as discussed by Kessler and Wang (2012), 15 out of the 96 human
subjects (most of them male) might not have employed a self-rotation strat-
egy, i. e. their embodiment score is zero or negative. As all instances of the
computational model implement a self-rotation strategy, another validation
was performed where human subjects that used alternative strategies were
excluded. In other words, the model data was compared to the 81 human
subjects that employed a self-rotation strategy (E > 0) rather than compar-
ing to all human subjects. Then, the null hypothesis that human and model
samples are drawn from the same continuous distribution cannot be rejected
(p = .484 for female data, p = .921 for male data, and p = .374 for combined
data).

The statistical evaluations whether human and model samples are drawn
from the same distribution are interesting for multiple reasons. Firstly, they
suggest that some human subjects (with near-zero or sub-zero embodiment
scores) indeed employed a strategy that does not rely on self-rotations. Sec-
ondly, the results suggest that the embodiment measures of human subjects
with a positive embodiment score and the embodiment measures of the
model instances might be drawn from the same distribution, which would
indicate that these human subjects have used an embodied transformation
strategy. Thirdly, it seems that males and females indeed differ in the way
they take perspectives of other people. Although the differences in the distri-
butions are small, some females seem to align themselves more thoroughly
compared to males.
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Figure 6.12: This figure qualitatively compares model and human embodiment mea-
sures in three groups: males, females and combined. One observation
is that while there are some model instances with a near-zero or sub-
zero embodiment score (the horizontal black line indicates the null-
line), there are significantly more human subjects with such scores (so
called “systemizers” that use an alternative strategy rather than a men-
tal rotation). Also, there is one female human subject with a very high
embodiment score of 2.02, while there do not seem to be any outliers
contained in the model data.

6.4.4.4 Importance of Attentional Component

The results obtained from the computational model also provide strong sup-
port that the attentional component is crucial to obtain results that are com-
parable to humans. The embodiment measures significantly differ when the
attentional component is not used (p < .001). This is because there is only
a slight correlation between the mixing parameter ω and the embodiment
measure E in that case. The smallest embodiment measure that was observed
is E = 0.45 for ω = 0.993, which is significantly higher compared to the em-
bodiment measures in humans7.

More generally, this shows that while the response times for congruent
and incongruent movements differ even if the attentional component is not
used, the differences between congruent and incongruent response times of
the model is then dissimilar to the differences observed in humans. This
finding suggests that humans employ an attentional mechanism similar to
that formalized in the computational model.

7 As in Sections 6.4.4.2 and 6.4.4.3, 96model instances were created and the experimental setup
was the same as in these sections.
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Figure 6.13: This figure shows ratio of egocentric responses when forced early re-
sponses are used (stopping the perspective taking process using Cmax).

6.5 model predictions

The model offers the following testable predictions. To the best of my knowl-
edge, no studies have investigated the following aspects or suggested these
predictions.

6.5.1 Forced Early Response Leads to Egocentric Bias

The first model prediction is concerned with imposing time pressure on
model responses. While the model typically responds as soon as the dis-
tance to the target agent is below the threshold ε, in these experiments the
response is forced once the response time hits an upper threshold Cmax

8. Re-
member that the response time C represents the number of forward passes
and corresponds to the response time of the model (see Section 6.2.5). There-
fore, the mental simulation process might be interrupted before the embod-
ied transformation process is completed, i. e. before the distance between
the self-agent and target agent drops below the distance threshold ε (see
Section 6.2.3).

As the embodied transformation account hypothesizes that the self-agent
mentally translates and rotates into the other’s point of view, not giving any
time for the mental rotation process should lead to a response which is fully
compatible with the self-agent’s own perspective (egocentric response). This
is shown in Figure 6.13, where Cmax = 0 leads to 100% egocentric responses.
Then, with increasing Cmax the ratio of egocentric responses slowly reduces,

8 Besides varying the threshold Cmax, the experimental setup used within this section is the
same as in Section 6.4.1.
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Figure 6.14: Trial congruency schematic (straight body postures of both agents). In
(a), the required direction of the mental rotation for trials #1 and #2

remains the same (both clockwise, congruent trials), while the direction
changes from clockwise to counterclockwise in (b) (incongruent trials).

up until Cmax ≈ 200 when it approaches chance level (i. e. the responses do
not depend on the egocentric view but instead only on the perspective of
the target agent). Note that Cmax = 200 coincides roughly with the mean re-
sponse time of the model in the same setup for 180-degrees angular disparity
(see Figure 6.5).

6.5.2 Habituation Effects

The second model prediction investigates whether there are habituation ef-
fects that should be taken into consideration when designing and evaluating
experiments with humans. For the following experiments, the model is set
up such that consecutive trials are dependent in the sense that the attentional
set A remains the same across trials. In other words, the modules that are
contained in the attentional set at the end of the previous trial are match-
ing those of the attentional set at the beginning of the current trial. This is
compared to a baseline where the trails are independent.
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6.5.2.1 Straight Body Postures

The first set of experiments assumes straight postures of both the self and tar-
get agents. Then, the required mental movement directions of the previous
and current trials are altered. Congruent trials are those where the required
movement directions match (i. e. clockwise follows clockwise, or counter-
clockwise follows counterclockwise), and incongruent trials are those where
clockwise follows counterclockwise or counterclockwise follows clockwise
(see Figure 6.14)9.

A Mann-Whitney U test is performed with the null hypothesis that the dis-
tributions of congruent and incongruent trials are equal (the response times
are equal), and the alternative hypothesis that congruent trails have lower
response times than incongruent trials (one-sided hypothesis). The null hy-
pothesis can be rejected when comparing congruent and incongruent trials
(p = .006). This result suggests that two consecutive trials that require the
same movement direction are faster compared to trials that require different
movement directions. As expected, the null hypothesis cannot be rejected
for the baseline comparison (p = .58).

6.5.2.2 Congruent and Incongruent Body Postures

The second set of experiments investigates whether these results can be ex-
tended to trials where the self-agent’s body posture is not straight. Now,
there are two types of congruencies: movement congruency (the self-agent’s
body posture is compatible with the required movement direction) and trial
congruency (the previous trial’s movement direction is compatible with the
current trial’s movement direction, as above). Importantly, however, the self-
agent’s posture is not changed across two trials as the physical movement
would change the modules in the attentional set.

Therefore, two tests can be performed. The first test compares two trials,
one with compatible trial congruency and another incompatible one. For
the first test, both trials have congruent movements (see Figure 6.15 for a
schematic). As above, a Mann-Whitney U test with a one-sided null hypoth-
esis is performed. The null hypothesis that both trials have equal response
times can be rejected (p < .001). This is not the case for the baseline compar-
ison (p = .51).

The second test is very similar to the first one, with the difference that both
trials have incongruent movements (rather than congruent movements as
above; see Figure 6.16 for a schematic). The null hypothesis of equal response

9 For this prediction, 24 models were instantiated. The angular disparity was set to ±80 de-
grees, and 12 trials were performed per angular disparity and model instance.
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Figure 6.15: Trial congruency schematic (congruent movement direction). While the
required mental rotation and the torso rotation are counterclockwise
for trial #2 in both (a) and (b), the required movement direction in the
previous trial (trial #1) is congruent with trial #2 in (a) (congruent trials)
but not in (b) (incongruent trials).

times can be rejected (p < .001), while this is not the case for the baseline
comparison (p = .33).

One can further compare the baseline trials with the trials where the atten-
tional modules remain across trials. There are statistically significant differ-
ences for congruent trials, both for congruent movements and incongruent
movements (p < .001 for both). However, there are no statistical differences
for incongruent trials, neither for congruent movements nor incongruent
movements (p = .25 and p = .82 respectively).

6.5.2.3 Implications for Experimental Design

The results presented in this section hypothesize that there are habituation
effects across trials. The habituation effects occur when the required move-
ment direction of two consecutive trials remains the same (Section 6.5.2.1),
regardless of the movement congruency (Section 6.5.2.2). Therefore, the hu-
man trials should be pseudo-randomized with respect to the trial congru-
ence, and statistical evaluation should take the trial congruence into account.
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Figure 6.16: Trial congruency schematic (incongruent movement direction). In both
(a) and (b), the required mental rotation (clockwise) and the torso ro-
tation (counterclockwise) are incongruent for trial #2. However, the re-
quired movement direction in the previous trial (trial #1) is congruent
with trial #2 in (a) (congruent trials) but not in (b) (incongruent trials).

6.6 conclusions

This chapter presented a computational model for PT that contains a set
of action primitives that are passed through a forward model as building
blocks. An attentional component that introduces competition between mul-
tiple action primitives was employed to reduce the model’s response time.
It was shown that the model’s response time is similar to those of the hu-
man visual system only if this attentional component is employed. It was
therefore argued that humans implement an attentional mechanism similar
to that of the proposed model.

The model also proposes the following testable predictions. The model
suggests that there should be a bias towards the egocentric perspective for
early forced responses, and a habituation effect with respect to the mental
movement direction of the previous stimulus.

This chapter has investigated a wide breadth of experiments that would
not be replicable on the physical iCub robot. However, future works on the
physical robot could shed light on complementary questions to those ad-
dressed in this chapter. For example, one could investigate how the noise
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contained in the estimates for the pose of the robot, the state of the human,
and the positions of the object will impact the results.

A rough estimate of the impact can be obtained using the simulated re-
sults. As discussed in Section 6.3.2.2, the distance threshold ε was set to 1.5
to achieve an error rate below 1%. Let us further assume that the primary
source of noise is the perception of the human’s state (SLAM and motor en-
coders can be used to obtain accurate estimates of the robot’s state, and the
object positions can be accurately obtained using RGB-D cameras). Asω ≈ 1,
the gaze direction of the human is the main component of the distance be-
tween self-agent and target agent, and the distance originating from com-
parisons of individual joints is negligible (see Section 6.2.4). Then, ε = 1.5
is equivalent to a gaze estimation error of 15 degrees, which is well above
the errors of the gaze estimation method presented in Chapter 5. In sum-
mary, these estimates suggest that the model’s validity is not constrained to
the simulated setup presented in this chapter, but also applies to physical
robots.

Further future work will discuss the developmental aspects of PT by learn-
ing the forward model and will show that an accurate forward model is
needed for PT. Thus, Section 7.2.4 will discuss the suggestion that children
are typically ego-centric as their developing forward models are only suffi-
ciently accurate to overcome small perspective differences.

Section 7.2.5 will discuss whether there is an embodied process that ac-
counts for the often observed heuristic of swapping left and right if the tar-
get agent’s perspective is directly opposite the self-agents perspective (180
degrees angular disparity).
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C O N C L U S I O N S A N D F U T U R E W O R K

The purpose of this chapter is threefold. It first summarizes the contributions
that were presented in this thesis, followed by a discussion of the limitations
of the work. Finally, this chapter presents work in progress and future re-
search directions that might emerge from this thesis.

7.1 overview and contributions of the thesis

The main contribution of this thesis is the study of perspective taking using
a mixed forward/reverse engineering approach, which led to an artificial
visual system that is implementable on a robotic system and a computational
model to study the human visual system. The thesis has thus addressed and
advanced research in various domains.

First, the perceptional components required to endow a robot with per-
spective taking abilities in markerless environments were detailed and im-
plemented on the iCub humanoid robot. It was shown that it is of advantage
to have separate mechanisms implementing the two levels of perspective tak-
ing – fast line-of-sight tracing for level one perspective taking and another
more elaborate mental rotation process for level two perspective taking. One
limitation of this initial approach was the approximation of the gaze direc-
tion of the human with their head pose, which was argued is not suitable
for human-robot interactions (HRIs).

To address this issue, a novel architecture for gaze estimation with large
camera-subject distances as commonly encountered in HRIs was designed. It
was shown that a major factor contributing to the weak performance of pre-
vious gaze estimators in HRIs is the lack of a large, labeled dataset in these
scenarios, which is due to the difficulty of obtaining ground truth annota-
tions. Therefore, the dataset collection was tackled from a new perspective.
Eyetracking glasses were used to obtain the ground truth gaze direction.
Semantic image inpainting was subsequently applied to overcome the ap-
pearance alteration caused by the eyetracking glasses. It was then shown
that this generalizes well to other scenarios such as laptop viewing.

Moreover, the forward engineering approach described above is just one
way of studying the perspective taking ability. The final contribution of this

123
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thesis was a reverse engineering approach that investigated the embodied
transformation account that stems from the psychology area. This was a
difficult challenge because the level of analysis within psychology is of a
different focus, and the terminology differs considerably. The work reported
here advocates that perspective taking is governed by a competition process
for visual attention. It was subsequently argued that humans implement an
attentional mechanism similar to that of the proposed model. This offers
a new perspective on the data obtained from behavioral experiments. The
model provides the following testable predictions. Firstly, it predicts a habit-
uation effect between different trials that depends on the congruence of two
subsequent trials. Secondly, it suggests that a forced early response leads to
a bias towards the own perspective.

These contributions are not only theoretical but can be readily applied
in practical settings as the work emerging from this thesis has been made
available in open-source developer kits to other researchers and the gen-
eral public. I hope this opens up future directions on perspective taking in
various research areas, including robotics, computer vision, computational
cognition, and computational neuroscience. The research itself is developed
using multiple open-source libraries, and the work in this thesis extended
many of them as highlighted in Appendix A.

7.2 limitations

The research in this thesis is only a small step on a long journey. This section
presents the limitations of the research, and the following section discusses
future avenues which might be taken following the presented work in the
thesis.

7.2.1 Applying Computer Vision Methods to Robotics

The presented work lies at the intersection between computer vision and
robotics, and several state-of-the-art algorithms for the visual perception
of the world surrounding the robot are used and proposed. However, it
is well known that applying computer vision algorithms to robots is chal-
lenging. This is due to different hardware, diverging datasets and real-time
constraints to name a few reasons (see Sünderhauf et al., 2018, for more
insights).

The proposed artificial visual system for perspective taking (PT) in HRI
that was presented in Chapters 3 and 5 is no different, and also suffers from
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some limitations. For example, the object recognition pipeline currently only
performs well on uniformly colored backgrounds and fails to segment the
objects properly when the background has varying texture.

Moreover, humans are perceived using an additional RGB-D camera that
is mounted on the robot’s mobile base. It would be desirable to omit this
camera, which would lead to a system that only uses the sensors of the hu-
manoid robot (as opposed to the “augmented” robot with sensors mounted
on the mobile base). However, the robot’s cameras only allow to either ob-
serve the object locations or the human’s gaze at any one time. As PT re-
quires the observation of object locations and human’s gaze, omitting the
RGB-D camera would require a strategy to attend these locations and inte-
grate the acquired information (for example by utilizing a working mem-
ory). The decision whether to use additional sensors is a typical trade-off on
whether one is looking for a close link to the human mechanisms (where
no additional sensors outside of the humanoid robot should be used) or
increased accuracy and ease of implementation.

7.2.2 Object Models

Another limitation is that the proposed system is currently not capable of
modeling individual objects in 3D. More specifically, the object model only
contains the surface that is perceivable from the robot’s current point of view.
Therefore, when mentally rotating the environment, so that it is aligned with
the human’s perspective, the visual models of the objects are incomplete as
the surface that is perceived by the human is not contained within the model
(unless the object is flat). This limits the applicability of the system for visual
level two perspective taking but does not impact level one perspective taking
or spatial level two perspective taking.

This limitation could be overcome by allowing the robot to manipulate ob-
jects so that they are perceived from multiple viewpoints and fusing the per-
ceptions to obtain dense and accurate 3D representations of the objects. Al-
ternatively, the 3D representation could be obtained by changing the robot’s
location so that the object is perceived from multiple viewpoints, as recently
proposed by Florence et al. (2018). One could also imagine applying recent
methods that can reconstruct a 3D representation of objects given a single
2D image (see e. g. the methods of Yan et al., 2016 and Wu et al., 2016).
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7.2.3 Extreme Head Poses

While the proposed gaze estimation method presented in Chapter 5 consid-
erably enlarges the applicability of eye gaze estimation methods, it fails to
estimate the gaze for extreme head poses. One could imagine the most ex-
treme case where the subject does not even face the camera. In future work,
the method could be extended so the gaze can be estimated even in these
situations. This will require the integration of an appropriate face detection
method, such as the one proposed by Marin-Jimenez et al. (2014). Initial
steps were made towards integrating saliency information for gaze estima-
tion when the eyes are not visible, similar to the proposed work by Recasens
et al. (2015, see Section 2.3 for more details on this work). Another appealing
way to pursue this research direction would be in enabling the gaze estima-
tor to output a probability distribution, where extreme head poses would
lead to a relatively flat distribution that corresponds to a high uncertainty
about the precise gaze location.

7.2.4 A Model of Child Development

The computational model introduced in Chapter 6 also has some limitations.
One of the assumptions is that the forward model is known. As we expe-
rience situations like those in the PT experiments that are investigated in
Chapter 6 in our everyday lives, this is a reasonable assumption for adults.
However, the motor system of infants and toddlers is relatively immature,
and hence a known forward model cannot be assumed (Demiris and Melt-
zoff, 2008). Instead, learning the forward model using training samples ac-
quired by issuing random movements (i. e. motor babbling) that change the
robot’s state would be analogous to the maturement of the child’s motor sys-
tem. The computational model could then be used to investigate the develop-
ment of perspective taking skills subject to the development of the internal
forward model.

7.2.5 Shortcut to Reverse Left/Right Judgments

Furthermore, the model does not capture the shortcut to reverse left/right
judgments for the other’s perspective if the other is directly opposite (see
Gardner et al., 2013, and Section 2.5.3 for more details). While it seems
straightforward to include such a shortcut, the question arises whether there
is yet another component that switches between the shortcut strategy and
the mental rotation strategy.
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7.3 future directions

Some future directions that directly emerge from the shortcomings of the
presented research were outlined above. This section describes some more
general and broader research questions that are related to the presented
research in this thesis and could be addressed in the future.

7.3.1 Relating Perspective Taking and Autobiographical Memories

While not presented in this thesis, I have recently investigated an autobio-
graphical memory for robots that allows organization of multi-modal data
so that it can be remembered, relived and augmented over time (Petit, Fis-
cher and Demiris, 2016a; 2016b). It would be interesting to investigate PT in
these autobiographical memories, which comes with several difficulties. For
example, the state of the objects and other agents will be generally more
uncertain compared to situations that happen in the present. Furthermore,
there is yet another “agent” involved: the “past self” (besides the “current
self”; Libby and Eibach, 2002), which may or may not use the same forward
model as the “current self”.

It also remains an open question whether the other’s perspective is in-
ferred while retrieving the memory, or whether the other’s perspective is
stored as memory along with the self-perspective1. The former would re-
quire additional computation but avoids information duplication, while the
latter would imply that duplicated information is stored, but the other’s per-
spective is readily available without requiring an embodied transformation.
This representation might change over time, as typically older memories are
more likely to be recalled from a third person perspective (Libby and Eibach,
2002).

The question which perspective is used to retrieve a memory is closely re-
lated to the concept of autonoetic consciousness, which studies the human’s
ability to mentally travel in time either into the past or future. Sutin and
Robins (2008) argue that the employed perspective can change the feelings
and thoughts of the person who is retrieving the memory, which ultimately
impacts the way we evaluate the memory and whether we would act again
in the same way.

1 Another alternative one could envision is a representation that is not tied to an agent but to
an arbitrary reference point.



128 conclusions and future work

7.3.2 Taking the Perspective of Arbitrary Agents

This thesis endowed robots with the ability to take the perspective of hu-
mans2, which relied on algorithms to estimate the head and eye poses of
humans. However, the robots fail to take the perspective of agents that are
not humans, as there is no knowledge of how these agents perceive the
world. This is in contrast to the skills humans possess. It has been shown
that humans can imagine the viewpoint as seen from even inanimate objects
such as arrows or lamps (Schurz et al., 2015). Equipping robots with such
skills would be interesting.

However, learning the associated “natural” viewpoint direction for each
object class individually does not scale. Instead, a more compelling research
avenue to explore is to find correspondences between the human body and
the object of interest automatically. Indeed, I have participated in works that
find correspondences on the abstraction level of kinematic structures (Chang,
Fischer, Petit, Zambelli and Demiris, 2016, 2018). There, it has been shown
that correspondence matches between humans and robots (or other objects
such as lamps) can be found. Future works will investigate whether the simi-
larity metrics between objects that are defined in these works can predict the
response time differences of humans that are tasked to take the perspective
of non-human agents. For example, one could investigate whether it is faster
to take the perspective of the iCub robot (with a similar body structure to a
human) or that of a lamp (which is dissimilar to a human body).

7.3.3 Active Vision and Perspective Taking

Humans are active agents, in the sense that they constantly move around
and change their pose to extract more information from their environment
depending on the task. Within the computer vision and robotics areas, ma-
nipulating the camera’s viewpoint to achieve these goals is called “active
vision” (see Bajcsy et al., 2018, for an overview and excellent review of re-
cent works).

I believe that active vision and perspective taking are two related prob-
lems and wish to explore this relationship in detail. Specifically, one could
argue that the emergence of PT requires not only forward model learning as
discussed in the previous section but also an understanding of a means to

2 The problem discussed in this section also applies to Chapter 6 where the perspective of
another robot is taken.
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achieve a task-specific goal. Precisely this task understanding is also investi-
gated in the active vision literature.

Another interpretation of active vision within PT is the following. Chap-
ter 6 introduced a distance metric that is minimized, which contained the
distance to the target agent. One could argue that this is a particular case
of a more general cost function that captures the additional information be-
ing gathered when changing the viewpoint. This, in turn, is a prominent
research topic within active vision.

7.4 epilogue

Just like humans, robots should be able to understand the intentions of oth-
ers and act accordingly. To make some steps towards this goal, this thesis
has drawn inspiration from computer vision, robotics, computational mod-
eling, and psychology. The thesis advanced the former areas directly and
suggested promising research avenues in the latter. While the thesis aimed
at a specific cognitive function, namely perspective taking, I believe that this
interdisciplinary approach, where one discipline informs another, opens ex-
citing new opportunities overall.
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A
R O B O T S , C O M P O N E N T S A N D S E N S O R S

This thesis features several robots, components and sensors, which are de-
scribed in this appendix for reference.

a.1 robot operating system

Throughout this thesis, the Robot Operating System (ROS; Quigley et al.,
2009) was used to communicate between different processes (within ROS
called nodes) in a standardized manner. The advantage of ROS over other
robotic middleware like Yet Another Robot Platform (see Appendix A.2) is
an extensive collection of tools that allow rapid development of new appli-
cations, an example being the RViz 3D visualization tool. ROS is well inte-
grated with most robots and sensors and allows for the fast integration of
new hardware. Hence, it is the most widely used robotics middleware at the
time of writing this thesis.

a.2 yet another robot platform

While ROS was used to develop most of the proposed algorithms, Yet An-
other Robot Platform (YARP; Fitzpatrick et al., 2006) was used to control the
iCub humanoid robot (Appendix A.3). Similarly to ROS, YARP provides a
collection of libraries for robotics, and a means to communicate between the
different processes. YARP is mostly written in C++ but exposes bindings to
many programming languages including Python.

YARP allows communication of processes that are written in ROS. Work
carried out for the thesis contributed several additions to streamline this
intercommunication, with the main addition being the ability to visualize
YARP processes and their interaction with ROS processes using the stan-
dard ROS tools (namely rqt_graph). Also, a bug was resolved that prohibited
resetting the iCub simulation in ROS.
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a.3 icub humanoid robot

Figure A.1 depicts the iCub humanoid robot that was used to conduct the
experiments in this thesis. The iCub is equipped with multiple sensors: en-
coders in all its 53 joints, force/torque sensors, tactile sensors integrated
into the artificial skin, and eye cameras (Metta et al., 2010). They allow for
a coherent understanding of body configuration, motor capabilities and the
environment as well as an ability to show facial expressions, which makes
it an ideal platform for studies of human-robot interaction and cognition.
The iCub uses YARP as underlying robotic middleware, such that the addi-
tions that were provided for YARP as discussed above are directly applicable
when working with the iCub.

Figure A.1: iCub humanoid robot1

1 This figure was originally taken by Xavier Caré (https://commons.wikimedia.org/wiki/
File:ICub_Innorobo_Lyon_2014_debout.JPG) and was modified to remove the background.
The original and modified figures are available under the CC BY-SA 4.0 license.

https://commons.wikimedia.org/wiki/File:ICub_Innorobo_Lyon_2014_debout.JPG
https://commons.wikimedia.org/wiki/File:ICub_Innorobo_Lyon_2014_debout.JPG
https://creativecommons.org/licenses/by-sa/4.0/


A.4 pupil labs eyetracker 133

a.4 pupil labs eyetracker

The Pupil Labs eyetracker (Kassner et al., 2014) was used within the dataset
collection framework described in Chapter 5 of this thesis. They have several
advantages over other mobile eyetracking glasses, one being the relatively
low price and another one being the open source software which allowed us
to write an interface between the programming interface of the Pupil Labs
glasses and ROS. Code was written to fix some issues within the Pupil Labs
software, which is now part of the official code repository.

As described in Section 5.2.1 and shown in Figure 5.4, the hardware of the
glasses was customized so that the eye cameras are at the same position for
all subjects. This modification is credited to Joshua Elsdon.

a.5 rgb-d cameras

Two different RGB-D cameras were used in the experiments of this thesis.
For the work reported in Chapters 3 and 4, the Asus Xtion Pro was used
(Figure A.2, left), which relies on structured light information to estimate
the depth of objects. Color images are provided at 1280x1024 resolution and
depth images at 320x240 resolution. The depth information is provided for
distances between 0.8 to 3.5 meters.

Figure A.2: Asus Xtion Pro2 (left) and Kinect v2
3 (right) RGB-D cameras

The Kinect v2 (Figure A.2, right) is a time of flight camera that is able to
capture color images at 1920x1080 resolution and depth images at 512x424
resolution. It has a wide field of view (70 degrees horizontally and 60 degrees
vertically) and can provide depth information for distances between 0.5 and

2 This figure is by Pierre Lecourt and is under the CC BY-NC-SA 2.0 license (originally from
https://flic.kr/p/e52Lxq)

3 This figure is by Evan-Amos and is in the public domain (originally from https://commons.
wikimedia.org/wiki/File:Xbox-One-Kinect.jpg)

https://creativecommons.org/licenses/by-nc-sa/2.0/
https://flic.kr/p/e52Lxq
https://commons.wikimedia.org/wiki/File:Xbox-One-Kinect.jpg
https://commons.wikimedia.org/wiki/File:Xbox-One-Kinect.jpg
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4.5 meters. These improved specifications are the reason for using the Kinect
v2 to collect the dataset as described in Chapter 5.

a.6 optitrack motion capture system

In Chapter 5, an OptiTrack motion capture system was used to record the
ground truth pose of the eyetracking glasses worn by subjects (OptiTrack,
2018). The motion capture system consists of eight Flex 3 cameras, each cap-
turing images at 640x480 resolution and a 100 frames per second sampling
rate. It allows tracking of the pose of objects with very high accuracy.



B
I N PA I N T I N G M E T H O D O L O G Y

This appendix details the semantic inpainting method based on Generative
Adversarial Networks (GANs) that was used in Chapter 5. The appendix is
split into three parts. First, the overall setup is provided along with the train-
ing objectives for both the generator and discriminator. This is followed by
the detailed network architecture that was used to implement the GANs. Fi-
nally, the training details are provided. The GAN implementation is credited
to Dr Hyung Jin Chang.

b.1 overall setup

Separate inpainting networks are trained for each subject i. Let Di denote a
discriminator that takes as input an image xi ∈ Rd (d = 224× 224× 3) of
subject i from the dataset where the eyetracking glasses are not worn, and
outputs a scalar representing the probability of input xi being a real sample.
Let Gi denote the generator that takes as input a latent random variable zi ∈
Rz (z = 100) sampled from a uniform noise distribution pnoise = U(−1, 1)
and outputs a synthesized image Gi(zi) ∈ Rd. Ideally, Di(xi) = 1 when xi
is from a real dataset pi of subject i and Di(xi) = 0 when xi is generated
from Gi. In the rest of the appendix, the subscript i is omitted for clarity.

The training is performed using a least squares loss function (Mao et al.,
2017), which has been shown to more stable and better performing, while
having a smaller chance of mode collapsing compared to other methods
(Mao et al., 2017; Zhu et al., 2017). The training objective for the discriminator
of the GAN is

min
D

LGAN (D) = Ex∼p

[(
D(x) − 1

)2]
+ Ez∼pnoise

[(
D
(
G(z)

))2]
(B.1)

and for the generator

min
G

LGAN(G) = Ez∼pnoise

[(
D
(
G(z)

)
− 1
)2]

. (B.2)
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In particular, LGAN(G) measures the realism of images generated by G,
which is considered as perceptual loss:

Lperception(z) =
[
D
(
G(z)

)
− 1
]2

. (B.3)

The contextual loss is measured based on the difference between the real
image x and the generated image G(z) of non-masked regions as follows:

Lcontext
(
z|M, x

)
=
∣∣M ′ � x − M ′ �G(z)

∣∣ , (B.4)

where � is the element-wise product and M ′ is the complement of M (i. e.
to define the region that should not be inpainted).

The latent z variable controls the images produced by G(z). Thus, gener-
ating the best image for inpainting is equivalent to finding the best ẑ value
which minimizes a combination of the perceptual and contextual losses:

ẑ = arg min
z

(
λLperception(z) +Lcontext(z|M, x)

)
(B.5)

where λ is a weighting parameter. After finding ẑ, the inpainted image can
be generated by:

xinpainted = M ′ � x + M�G(ẑ). (B.6)

Poisson blending (Pérez et al., 2003) is then applied to xinpainted in order
to generate the final inpainted images with seamless boundaries between
inpainted and not inpainted regions.

b.2 inpainting network architecture

In order to obtain high quality images, hyperparameter tuning was per-
formed. The generator’s architecture is z-dense(25088)-(256)5d2s-(128)5d2s-
(64)5d2s-(32)5d2s-(3)5d2s-x, where “(128)5c2s/(128)5d2s” denotes a convo-
lution/deconvolution layer with 128 output feature maps and kernel size 5
with stride 2. All internal activations use SeLU (Klambauer et al., 2017) while
the output layer uses tanh activation function. The discriminator’s archi-
tecture is x-(16)5c2s-(32)5c2s-(64)5c2s-(128)5c2s-(256)5c2s-(512)5c2s-dense(1).
LeakyReLU (Maas et al., 2013) is used for all internal activations (α = 0.2)
and a sigmoid activation is used for the output layer. The same architecture
is used for all subjects.
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b.3 training details

The Adam optimizer (Diederik P. Kingma, 2015) is used to train G and D,
with a learning rate of 0.00005, β1 = 0.9, β2 = 0.999 and a batch size of 128
for 100 epochs. The Xavier weight initialization (Glorot and Bengio, 2010)
is used for all layers. To find ẑ, all values in z are constrained to be within
[−1, 1] (as suggested by Yeh et al., 2017). The network is trained for 1, 000
iterations and the weighting parameter λ is set to 0.1.



138



C
A U T H O R ’ S P U B L I C AT I O N S

This appendix contains references and short summaries of all peer-reviewed
publications and contributions made during the course of this PhD. Listed
first are the publications that form the main work of the thesis, with the
relevant chapters in which they are contained:

Fischer, T. and Demiris, Y. (2016), Markerless Perspective Taking for Hu-
manoid Robots in Unconstrained Environments, in ‘IEEE International
Conference on Robotics and Automation’, pp. 3309–3316. doi: 10.1109/
ICRA.2016.7487504.

• Presents a framework for perspective taking implemented on the iCub
humanoid robot. Two separate mechanisms are implemented corre-
sponding to the two different levels of perspective taking, and the
framework does not require any markers or prior knowledge of the
environment.

• Chapter 3 is based on this article.

Fischer, T., Puigbo, J.-Y., Camilleri, D., Nguyen, P., Moulin-Frier, C., Lallée, S.,
Metta, G., Prescott, T. J., Demiris, Y. and Verschure, P. F. M. J. (2018), ‘iCub-
HRI: A software framework for complex human robot interaction scenar-
ios on the iCub humanoid robot’, Frontiers in Robotics and AI 5(22), 1–9.
doi: 10.3389/frobt.2018.00022.

• Introduces the iCub-HRI library that provides components related to
perception, object manipulation and social interaction for the iCub hu-
manoid robot.

• Chapter 4 is based on this article.

Fischer, T., Chang, H. J. and Demiris, Y. (2018), RT-GENE: Real-Time Eye
Gaze Estimation in Natural Environments, in ‘European Conference on
Computer Vision’, pp. 339–357. doi: 10.1007/978-3-030-01249-6_21.

• Describes the design of a real-time gaze estimation framework, and
presents a new dataset containing accurate gaze annotations of 17 par-
ticipants. The framework is particularly suited for large camera-subject
distances as commonly encountered in human-robot interactions.

• Chapter 5 is based on this article.
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http://dx.doi.org/10.1109/ICRA.2016.7487504
http://dx.doi.org/10.1109/ICRA.2016.7487504
http://dx.doi.org/10.3389/frobt.2018.00022
http://dx.doi.org/10.1007/978-3-030-01249-6_21
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Fischer, T. and Demiris, Y. (2018), A Computational Model for Embodied Vi-
sual Perspective Taking: From Physical Movements to Mental Simulation,
in ‘IEEE Conference on Computer Vision and Pattern Recognition Work-
shop on Vision Meets Cognition’. Available from https://hdl.handle.net/
10044/1/60434.

• Describes the design of a computational model for perspective taking,
and puts forward the proposal that a visual attention mechanism ex-
plains the response times reported in human visual perspective taking
experiments.

• Parts of Chapter 6 are based on this article.

I also co-authored the following publications, though they do not form the
main work of the thesis:

Moulin-Frier, C.∗, Fischer, T.∗ (contributed equally), Petit, M., Pointeau, G.,
Puigbo, J.-Y., Pattacini, U., Low, S. C., Camilleri, D., Nguyen, P., Hoff-
mann, M., Chang, H. J., Zambelli, M., Mealier, A.-L., Damianou, A., Metta,
G., Prescott, T. J., Demiris, Y., Dominey, P. F. and Verschure, P. F. M. J.
(2018), ‘DAC-h3: A Proactive Robot Cognitive Architecture to Acquire and
Express Knowledge About the World and the Self’, IEEE Transactions on
Cognitive and Developmental Robotics 10(4), 1005–1022. doi: 10.1109/TCDS.
2017.2754143.

• Presents a cognitive architecture that allows the iCub humanoid robot
to engage in a proactive, mixed-initiative exploration and manipula-
tion of the environment. Human-robot interactions experiments show
that the cognitive architecture can be used with naive users.

Petit, M.∗, Fischer, T.∗ (contributed equally) and Demiris, Y. (2016), ‘Life-
long Augmentation of Multi-Modal Streaming Autobiographical Memo-
ries’, IEEE Transactions on Cognitive and Developmental Robotics 8(3), 201–213.
doi: 10.1109/TAMD.2015.2507439.

• Provides a principled framework for the cumulative organization of
sensorimotor and interaction data in an autobiographical memory. The
framework allows processing and augmenting of these data as the pro-
cessing and reasoning abilities of the iCub humanoid robot develop
and further interactions with humans take place.

Petit, M.∗, Fischer, T.∗ (contributed equally) and Demiris, Y. (2016), To-
wards the Emergence of Procedural Memories from Lifelong Multi-Modal
Streaming Memories for Cognitive Robots, in ‘IEEE/RSJ International Con-
ference on Intelligent Robots and Systems Workshop on Machine Learn-

https://hdl.handle.net/10044/1/60434
https://hdl.handle.net/10044/1/60434
http://dx.doi.org/10.1109/TCDS.2017.2754143
http://dx.doi.org/10.1109/TCDS.2017.2754143
http://dx.doi.org/10.1109/TAMD.2015.2507439
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ing Methods for High-Level Cognitive Capabilities in Robotics’. Available
from https://hdl.handle.net/10044/1/40206.

• Extends the autobiographical memory framework introduced above
with a reasoning algorithm that generalizes the robots’ understanding
of actions by finding the point of commonalities with previous actions.

Chang, H. J., Fischer, T., Petit, M., Zambelli, M. and Demiris, Y. (2016), Kine-
matic Structure Correspondences via Hypergraph Matching, in ‘IEEE Con-
ference on Computer Vision and Pattern Recognition’, pp. 4216–4225. doi:
10.1109/CVPR.2016.457.

• Presents a framework that builds up kinematic structure correspon-
dence matches across heterogeneous objects captured with different
sensors. For example, the framework allows the iCub humanoid robot
to find correspondences between a human captured using an RGB-D
camera and the robot’s arm recorded using the robot’s eye cameras.

Chang, H. J., Fischer, T., Petit, M., Zambelli, M. and Demiris, Y. (2018),
‘Learning Kinematic Structure Correspondences Using Multi-Order Simi-
larities’, IEEE Transactions on Pattern Analysis and Machine Intelligence 40(12),
2920–2934. doi: 10.1109/TPAMI.2017.2777486.

• This journal article extends the conference paper above with more rig-
orous experimental analyses, more comparisons to other methods, and
a dataset containing more sequences.

Zambelli, M., Fischer, T., Petit, M., Chang, H. J., Cully, A. and Demiris,
Y. (2016), Towards Anchoring Self-Learned Representations to Those of
Other Agents, in ‘IEEE/RSJ International Conference on Intelligent Ro-
bots and Systems Workshop on Bio-inspired Social Robot Learning in
Home Scenarios’. Available from https://hdl.handle.net/10044/1/40970.

• Proposes a developmental framework that allows an iCub humanoid
robot to anchor representations autonomously learned by the robot
into the perspective of other agents. This represents a step towards
the emergence of a mirror neuron-like system. The perspective taking
algorithms presented within this thesis are a critical component for this
developmental framework.

Choi, J., Chang, H. J., Fischer, T., Yun, S., Jeong, J., Lee, K., Demiris, Y. and
Choi, J. Y. (2018), Context-aware Deep Feature Compression for High-
speed Visual Tracking, in ‘IEEE Conference on Computer Vision and Pat-
tern Recognition’, pp. 479–488. doi: 10.1109/CVPR.2018.00057.

https://hdl.handle.net/10044/1/40206
http://dx.doi.org/10.1109/CVPR.2016.457
http://dx.doi.org/10.1109/CVPR.2016.457
http://dx.doi.org/10.1109/TPAMI.2017.2777486
https://hdl.handle.net/10044/1/40970
http://dx.doi.org/10.1109/CVPR.2018.00057
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• Presents a real-time object tracking framework that compresses deep
features using auto-encoders that are adapted for the specific tracking
scene.

Kristan et al. (2018), The sixth Visual Object Tracking VOT2018 challenge
results, in ‘European Conference on Computer Vision Workshops’ (to ap-
pear). Available from http://prints.vicos.si/publications/files/365.

• Evaluates the object tracking framework described above in a large
scale comparison with over 50 other recent object trackers.

Choi, J., Chang, H. J., Yun, S., Fischer, T., Demiris, Y. and Choi, J. Y. (2017),
Attentional Correlation Filter Network for Adaptive Visual Tracking, in
‘IEEE Conference on Computer Vision and Pattern Recognition’, pp. 4807–
4816. doi: 10.1109/CVPR.2017.513.

• Introduces an object tracking framework with high robustness and
computational speed which is achieved by choosing a subset of the
associated correlation filters using an attentional mechanism.

Nguyen, P. D. H., Fischer, T., Chang, H. J., Pattacini, U., Demiris, Y. and
Metta, G. (2018), Transferring Visuomotor Learning from Simulation to the
Real World for Manipulation Tasks in a Humanoid Robot, in ‘IEEE/RSJ
Conference on Intelligent Robots and Systems’, pp. 6667–6674. Available
from https://goo.gl/AvBEmR.

• Introduces a method that allows transferring calibration data from sim-
ulation to the real world for eye-hand coordination of the iCub robot.
It also describes a calibrator that can automatically compensate for the
systematic error contained in the real robot’s joint measurements.

The following non-peer-reviewed meeting abstract also resulted from the
work on this thesis:

Fischer, T. and Demiris, Y. (2017), Perspective Mechanisms for Facilitating
Joint Actions in Human-Robot Collaborations, in ‘Joint Action Meeting’.
Available from https://goo.gl/c6ewBR.

• Describes preliminary research towards learning the forward model
that is contained in the computational model presented in Chapter 6.
The main hypothesis is that accurate forward models are needed for
perspective taking, which predicts that children are typically more ego-
centric as their forward model still matures.

http://prints.vicos.si/publications/files/365
http://dx.doi.org/10.1109/CVPR.2017.513
https://goo.gl/AvBEmR
https://goo.gl/c6ewBR
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Admoni, H. and Scassellati, B. (2017), ‘Social Eye Gaze in Human-Robot
Interaction: A Review’, Journal of Human-Robot Interaction 6(1), 25–63.
doi: 10.5898/JHRI.6.1.Admoni (page 28).

Akkaladevi, S. C., Plasch, M., Pichler, A. and Rinner, B. (2016), Hu-
man Robot Collaboration to Reach a Common Goal in an Assembly
Process, in ‘European Starting AI Researcher Symposium’, pp. 3–14.
doi: 10.3233/978-1-61499-682-8-3 (page 25).

Alsmith, A. J., Ferrè, E. R. and Longo, M. R. (2017), ‘Dissociat-
ing contributions of head and torso to spatial reference frames:
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