

imperial.ac.uk/PersonalRobotics

RESEARCH GOAL

SCIENTIA

We present a novel framework for *finding kinematic structure correspondences* between two videos of heterogeneous objects via hypergraph matching

Kinematic Structure Represent kinematic properties between rigid body parts

> Skeleton Generally a framework of bones

APPLICATIONS

- Robot learning by imitation
- Viewpoint invariant human action recognition by 3D skeleton
- Affordance based articulated object/tool categorisation & manipulation
- > Motion retargeting to robots

CONTRIBUTIONS

Casting the kinematic structure correspondence problem into the *hypergraph matching framework,* incorporating *multi-order similarities* with *normalisation weights*

- 1st order Structural topology similarity by a new topology constrained

subgraph isomorphism aggregation

- 2nd order Kinematic correlation similarity between pairwise nodes
- 3rd order Combinatorial local motion similarity using geodesic distance on the
- **Riemannian manifold**

OVERALL FRAMEWORK

st order: Topology 2nd order: Kinematic correlation Kinematic structure Feature extraction generation & Motion segmentation 3rd order: Combinatorial motion

PREVIOUS CORRESPONDENCE MATCHING APPROACHES

- Local shape feature matching [10,20,26,43]
- Skeleton corresponding points matching
- Graph alignment methods [25,37]

CONTACT

- Video result, source code, and the new dataset are available: www.imperial.ac.uk/PersonalRobotics • Dr. Hyung Jin Chang (hj.chang@imperial.ac.uk) and Prof. Yiannis Demiris (y.demiris@imperial.ac.uk)
- This work was supported in part by the EU FP7 project WYSIWYD under Grant 612139

Hypergraph Matching

Kinematic Structure Correspondences via Hypergraph Matching

Hyung Jin Chang

Tobias Fischer Maxime Petit Martina Zambelli

Personal Robotics Laboratory, EEE Department Imperial College London, United Kingdom

Yiannis Demiris

EXPERIMENTAL RESULTS 1st order **Structure Topology** And And And And Synthetic Dataset Validations on 2nd order roposed 2nd term only Proposed 3rd term only **Kinematic Correlation** 3 4 Symmetry order 0.3 0.4 0.5 0.6 0.7 1 2 3 4 5 6 - Topology changes ematic deformation test in 2D (N = 1(c) Symmetry test in 2D - Kinematic deformation $\sum \mathcal{F}^3_{(i,i')(j,j')(k,k')} X_i X_j X_k$ 3rd order **Combinatorial Motion** - Structure symmetricity Proposed 2nd term only Proposed 3rd term only Algorithm 1: Generating the first order similarity fu 1 2 3 4 5 6 7 0.3 0.4 0.5 0.6 3 Symmetry order (d) Outlier test in 3D (N = 10) (e) Kinematic deformation test in 3D (N = 10(f) Symmetry test in 3D tion using structural topology Real Kinematic Structure Dataset $\mathcal{M} \leftarrow \text{calculate by Eq.}(3) \text{ based on } \mathbb{I}$ **Comparison with Other Matching Methods** for $j \in [1:N']$ do $\leftarrow \mathsf{VF2}(G, \{G' \setminus v_j\})$ $\mathcal{M}'_i \leftarrow \text{calculate by Eq.(3) based on } \mathbb{I}$ Appearance feature matching: ACC Appearance feature match Appearance feature matching: ACC Appearance feature mat **Kinematic Correspondence Chain Ger** [3] H. J. Chang and Y. Demiris. Unsupervised Learning of Complex Articulated Kinematic Structures combining Motion and Skeleton Information. In CVPR, 2015 [10] O. Duchenne, F. Bach, I.-S. Kweon, and J. Ponce. A Tensor-Based Algorithm for High-Order Graph Matching. In TPAMI, 2011 [20] J. Lee, M. Cho, and K. M. Lee. Hyper-graph Matching via Reweighted Random Walks. In CVPR, 2011 [25] B. Neyshabur, A. Khadem, S. Hashemifar, and S. S. Arab. NETAL: A new graph-based method for global alignment of protein-protein interaction networks. Bioinformatics, 2013 [26] Q. Nguyen, A. Gautier, and M. Hein. A Flexible Tensor Block Coordinate Ascent Scheme for Hypergraph Matching. In CVPR, 2015 [37] V. Vijayan, V. Saraph, and T. Milenkovic. MAGNA++: Maximizing Accuracy in Global Network Alignment via both node and edge conservation. Bioinformatics, 2015 [43] R. Zass and A. Shashua. Probabilistic Graph and Hypergraph Matching. In CVPR, 2008

IEEE 2016 Conference on **Computer Vision and Pattern Recognition**

CVPR2016

	Metho	ods	Accuracy (%)
	Proposed $\mathcal{F}(X)$	to HGM [43]	35.06 (±30.73)
TAL Graph alignment: MAGNA++	Proposed $\mathcal{F}(X)$	to TM [10]	29.76 (±21.65)
	Proposed F to B [26]	3CAGM+MP	69.09 (±20.65)
	NETAL [25]		67.72 (±39.59)
M Proposed <i>F</i> to BCAGM+MP	MAGNA++ [37]		63.42 (±33.66)
ng: RRWM Appearance feature matching: PGM	Proposed $\mathcal{F}(X)$ [20] without we normalisation	to RRWHM eight	88.23 (±13.07)
	Proposed $\mathcal{F}(X)$ [20] with weigh normalisation	to RRWHM າt	92.99 (±10.41)
AL Graph alignment: MAGNA++ Image: Alignment: MAGNA++ Image: Alignment: MAGNA++ Image: Alignment: Alignment: MAGNA++ Image: Alignment: Alignmen	Additional of the second se	btw Diffe	erent Domains
eration	Robot :	self left arm	to right arm
	Robot self	f left arm to	human arm