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Introduction and motivation

» In recent years, gaze estimation methods have made substantial

progress. However, these methods typically assume that the
subject’s eyes are open,; for closed eyes, gaze estimation methods
provide irregular gaze estimates.
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» Previous methods for blink detection have not been integrated
with gaze estimation methods, and have used separate datasets
that significantly differ from those used by gaze estimation methods.

A new dataset for blink estimation

» \We annotate over 200,000 images of the RT-GENE dataset
(Fischer et al. ECCV2018) that was introduced for gaze estimation

In natural settings with large camera-subject distances and less
constrained subject motion.

Open eyes (218,548 images)

Closed eyes (10,444 images)
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» We experiment with deep networks that have different backbones,

l.e. DenseNet, ResNet and MobileNet.

» We propose to use ensemble networks as they improve the blink

estimates significantly, however they come with increased
computational cost.

Semantic labelling of the eye region

» We present preliminary results on using Mask
R-CNN to semantically label the eye region.
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This represents first
steps towards
unifying gaze & blink
estimation.
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Experimental results

» State-of-the-art performance on both the newly proposed RT-BENE
dataset (left, 36% improvement) and previous datasets such as
Eyeblink8 (right, 17% improvement) and Researcher’s Night.

» RT-BENE is a much more challenging dataset compared to previous
datasets (F1=0.66 vs F1>0.9)

Precision-Recall curve RT-BENE dataset (3-fold) Precision-Recall curve Eyeblink8 dataset (3-fold)
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» The proposed models still perform very well in significantly different
scenarios that were not seen at training time (here: Talking Face dataset).

Testing: aIking Face

Training: RT-BENE

Conclusions
» We introduce a new challenging dataset for blink estimation.

» Our ensemble methods outperform the state-of-the-art.

» We take steps towards unifying gaze estimation and blink
estimation methods.



