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Abstract

The primary visual cortex of mammalians is the most extensively studied area in the

visual system. The first studies discovered that there is a retinotopic mapping from the

retina to the primary visual cortex. Retinotopic mapping is where neighboring neurons

in the cortex respond to neighboring locations on the retina. In further research various

other cortical maps such as orientation maps and color maps were discovered. All the

cortical maps are overlaid onto the same set of neurons, and there is evidence that they

interact with each other.

There are a variety of models aiming to replicate the properties of neurons in the

primary visual cortex. The majority of these focus on a small subset of all known spa-

tial cortical maps. For this thesis, an all maps model based on the Gain Control, Adap-

tation, Laterally (GCAL) model has been developed. There, it has been suggested that

the underlying principles of firing rate neurons, arranged in two dimensional sheets,

using Hebbian learning to adapt to either artificial input patterns or natural images,

can account for a variety of different maps, as well as their combination. This re-

quired substantial work on the software package in use, Topographica, which led to a

superior system to define models. It is likely this will be used by almost all users of

Topographica in the future.

This thesis is a small step towards the goal of gaining an understanding of why V1

is wired as it is in mammals, and eventually how the whole visual system works. The

improvements in Topographica which have been made in this project have resulted in

the production of maintainable, modular models, which will hopefully lead to more ex-

citing research in the area of computational neuroscience of vision. The model which

has been built will help in gaining insights to the interplay of the various cortical maps

in the primary visual cortex.
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Chapter 1

Introduction

The human visual system works remarkably well, processing an enormous amount

of complex information in real time. Visual processing areas make up approximately

half of the brain, and yet we do not have a good understanding of how we carry out

everyday tasks, such as face recognition, object detection and obstacle avoidance.

The primary visual cortex (also: striate cortex, V1, area 17) is the first cortical

area that processes visual input. Compared to higher visual areas, it is widely studied,

and many experiments have been carried out focusing on this area. There, matching

qualitatively across species, cortical maps were found. For example, nearby neurons in

V1 respond to nearby areas on the retina (Connolly and Van Essen, 1984), and nearby

neurons in V1 also prefer similar orientations of the input stimuli (Blasdel, 1992b).

These maps were found for a variety of pattern features, i.e. preferences for position,

orientation, direction, spatial frequency and color, as well as the eye the pattern was

presented on, and the difference of pattern locations in the two eyes. Each map has

distinct features, and they are all overlaid on the same set of neurons.

Many computational models which aim to replicate these maps, in order to im-

prove our understanding of the visual system, have been created. In this thesis, the

Gain Control, Adaptation, Laterally (GCAL) model Stevens et al. (2013) is extended

to cover all known spatial feature maps. The original model produces biologically real-

istic position preference and orientation maps, using a set of two-dimensional sheets of

firing-rate neurons representing different areas of the visual pathway. By adding more

feature specific sheets, and presenting more complex input patterns, the same basic

principles can account for a variety of cortical maps. The initially unspecific neurons

in V1 become selective for input features using normalized Hebbian learning.

In chapter 2 an introduction to the visual system is given. This is of importance
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2 Chapter 1. Introduction

as the models discussed in later chapters are based on these findings. Furthermore,

all known spatial maps in the visual cortex are presented and their properties are dis-

cussed. As one of the aims of this thesis is to build a model of all known spatial maps, it

is important to be able to compare the maps resulting in the model with maps found ex-

perimentally in animals (Bednar, 2012). There is clear evidence that the cortical maps

are not independent of each other, i.e. they are related to each other (Blasdel, 1992a;

Müller et al., 2000; Yu et al., 2005; Landisman and Ts’o, 2002). Support for this hy-

pothesis as well as various suggestions of how these maps emerge are also shown.

In chapter 3 various models of the primary visual cortex are introduced. They are

classified into three main groups, each with distinct properties: models based on the

elastic net, sparse coding models and self-organizing models. The focus is on self-

organizing maps, as these are the origins for the model presented in this thesis. In

addition, various papers which report multiple maps are discussed. The chapter ends

with open questions which might be answered by an all maps model.

In order to build an all maps model which is maintainable and understandable,

various changes to the software package in use, Topographica, are necessary. These

have been implemented for this thesis and are described in detail in chapter 4. Because

the underlying GCAL model is input-driven, it is essential to be able to create input

patterns covering various features. For example, an orientation map only emerges if the

input patterns have varying orientations. The input patterns for an all maps model have

to cover a number of different features, and modeling these features was standardized

and simplified. Furthermore, a superior way of defining models has been implemented.

A class-based system allows the splitting up of the model into levels, and reusing those

levels in multiple models. A novel way of modeling motion, based on multiple delayed

projections to V1, is also shown in this chapter.

The structure of an all maps model is described in chapter 5. Starting with a model

which only covers two dimensions, positional preference and orientation preference, it

is shown how other dimensions can be added to this model. Then the all maps model

is introduced, which is a combination of the other models.

Corresponding to the models discussed in chapter 5, the resulting maps are shown

and compared to previously published maps in chapter 6. There, it emerges that all

individual models produce maps which are comparable to previous publications, how-

ever the combined model does not yet produce cortical maps due to issues in determin-

ing the correct parameters in a large parameter space.

In chapter 7, a discussion of the architecture, methods and results is presented. This

also includes suggestions for future research.



Chapter 2

Biological background

This chapter first provides a brief introduction to the visual system of mammals. Then,

experimental findings are reviewed in regards to spatial feature maps in the visual

cortex of various species. The individual maps are first investigated separately, and

then their interaction is discussed. Furthermore, an overview how these maps evolve

during the development of animals is given.

Studying the visual system has several advantages over other sensory systems.

Firstly, the visual system covers a large area in the brain, with many neurons involved.

The early stages of the visual system are well understood and outlined below. From an

experimental viewpoint, it is relatively easy to conduct experiments, as the input can

be controlled easily. Also, vision is important for the animal behavior in general.

2.1 Visual system

In this section, an introduction to the visual system of mammals and various reasons

why the visual system is studied in this thesis are given. Also, it is important to under-

stand the various stages of visual processing, as models of the primary visual cortex

build upon these principles.

Visual input is processed in the visual system, which is part of the central nervous

system. Photons emitted by light sources, and reflected by objects, hit the eyes. There,

in the retina, the visible range of wavelengths is sampled by two or three different cone

types. Most mammals are dichromatic, and therefore possessing only two cone types:

Short and Medium-Long. Humans possess three cone types, activated by light with

Short (blue), Medium (green) and Long (red) wavelength. Furthermore, there are rods

which are responsible for night-vision (Bear et al., 2006).

3



4 Chapter 2. Biological background

The retinal ganglion cells (RGC) in the inner layer of the retina encode the light

level at a given location. Furthermore, a pre-processing step is done: RGC only get

activated when there is a difference of light exposure of their center receptive field and

surround receptive field. On-center cells are excited by light in the center of their re-

ceptive field, and inhibited by light in the surround. Off-center cells show the opposite

behavior (Famiglietti and Kolb, 1976). Therefore, RGC are not activated in uniform

areas. Furthermore, there is no orientation preference in these cells. The sampling in

animals having a fovea is not uniform, instead there is a higher sampling rate of the

fovea compared to the periphery. There, the cones are both: smaller and higher in

their density (Schein, 1988). There are only very few isolated rod cells found in the

fovea (Wässle et al., 1995).

The activation is transmitted along the optic nerve to the optic chiasm, where the

nerves partially cross. The images of the inner side of each retina cross to the other

side of the brain, whereas the images of the outer side of the retinas are kept on the

same side. Then, input from the right visual field goes further along the left optic tract

to the left lateral geniculate nucleus (LGN) and vice versa (Crick and Asanuma, 1986).

The two lateral geniculate nuclei are located in the thalamus, where also other nuclei

are located, which process input from other sensory systems.

The geniculostriate pathway connects the LGN with the primary visual cortex. V1

is a slightly folded sheet of cells and is one of the most widely studied areas in the

brain. It consists of six horizontal layers, with incoming connections from the LGN

terminating in layer 4. Outgoing connections to higher areas depart from layers 2 and

3, and feedback connections to the LGN depart from layer 6 (Adler et al., 2011). For

this thesis, the cortical maps found in V1 are of particular importance and are presented

in more detail in section 2.2. For the interested reader, the paper by Crick and Asanuma

(1986) is recommended to gain insights into the anatomy and physiology of the cortex.

Interestingly, cortical maps are found for most sensory systems, not just the visual

system. For example, the auditory cortex and somatosensory cortex both show a topo-

graphic mapping (Udin and Fawcett, 1988). It even has been shown that the auditory

cortex develops similarly to the visual cortex if the retinal projections are rewired in a

way that the visual input arrives in the auditory cortex. This suggests that the under-

lying principles of development are shared across different brain areas, and that this

development is input-driven (Sharma et al., 2000).

In most mammals, V1 connects to several other higher visual areas. In monkeys

and humans, it is thought that two streams emerge: the ventral stream which projects to
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the inferior temporal cortex (IT) and the dorsal stream which projects to the posterior

parietal (PP) cortex (Mishkin et al., 1983). The ventral stream is thought to be related

with object recognition and identification, whereas the dorsal stream is thought to be

involved with the localization of these objects (Milner and Goodale, 1998). However,

these areas are not nearly as well understood as V1 (Kaas, 2001). Furthermore, in

some species like the least shrew, which is one of the smallest mammals, V1 directly

connects to the motor system with no further visual areas in between (Catania et al.,

1999).

2.2 Cortical maps found in animals

This section reviews a variety of cortical maps which are found in animals. Experi-

ments showing which cortical maps exist in animals, which properties they have, and

differences in maps between species are crucial in evaluating models of the visual sys-

tem. The maps presented in this section act as a reference to the maps which emerge

from the models built in chapter 5.

Neurons in V1 are organized in a retinotopic arrangement, i.e. nearby neurons in

V1 respond to nearby areas of the retina (Van Essen et al., 1984). However, they are

also selective for a variety of other dimensions. For example, it has been found that

neurons prefer stimuli which have a certain orientation, and most neurons prefer one

eye over the other (Löwel et al., 1988).

It is important to point out that a single neuron has preferences for many dimen-

sions, i.e. a neuron has a preferred position on the retina, a preferred stimuli orientation

and a preferred eye. Although neurons respond the strongest to inputs which fulfill all

preferences, they usually also respond to stimuli which have similar features. In this

section, the individual maps which represent preferences for a certain feature are pre-

sented, and their interaction is discussed.



6 Chapter 2. Biological background

2.2.1 Measurement methods

Most of the studies mentioned below use optical imaging to measure cortical maps

in animals. First, the skull of the animal is removed, which exposes the surface of

the visual cortex. Then, visual patterns are presented and the response of neurons is

recorded. Usually sine gratings are used as patterns. Depending on the study, either the

absorbed light of the cortex is measured, or chemicals are applied to the cortex which

emit light when nearby neurons are active (Blasdel and Salama, 1986).

The preference of neurons is typically computed with differential imaging, i.e. two

images for complementary stimuli are recorded, and the difference of these two images

reveals areas which prefer one of the stimuli. For example, when measuring orientation

maps, one first captures an image for a particular orientation, and then subtracts the

image captured for the orthogonal orientation (Blasdel, 1992b). These steps are usually

repeated and averaged. Then, the responses for different stimuli are compared, and the

stimulus which is most effective to drive particular neurons emerges.

In the 1990’s, an alternative method to measure maps in a finer scale emerged.

Using two-photon microscopy, individual cells can be tagged with their feature prefer-

ence (Swindale, 2006). The basic principle is that two photons have to hit a chemical

from different directions before light is emitted. This allows a non-blurry measurement

of single cells, in 2D as well as 3D (going into depth) (Denk et al., 1990). This method

is much more precise than optical imaging, however the area which can be measured

is smaller.

Early studies were made using microelectrodes, which were placed directly in

cells (Hubel and Wiesel, 1959). Although very precise measurements were possible,

the responses of only very few cells could be recorded. It did not allow the measuring

of cortical maps, but only preferences of single neurons.
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2.2.2 Retinotopic mapping

Retinotopy refers to the organized mapping of a receptive field position in the retina

to retinotopic coordinates in a brain area, usually the LGN or an area of the visual

cortex. This first has been discovered in wounded soldiers, where the area of blindness

of the visual field could be predicted from the brain area which was damaged (Holmes,

1918).

Figure 2.1: Mapping from the visual field (A) to the LGN (B) and V1 (C) in a macaque

monkey. The central 5 degrees are overrepresented. Figure reprinted from Connolly

and Van Essen (1984).

This was later verified using micro-electrodes. For example, retinotopic mapping

was shown in cats (Tusa et al., 1978; Tusa and Palmer, 1980), rats (Espinoza and

Thomas, 1983) and macaque monkeys (Van Essen et al., 1984; Connolly and Van Es-

sen, 1984). In macaque monkeys, due to the fovea, the central 5 degrees in the visual

field occupy approximately 40% of the cortex.

2.2.3 Orientation map

Neurons in V1 are not only arranged in a retinotopic manner, but nearby neurons are

also often selective for similar orientations of stimuli. Nearby neurons with a simi-

lar orientation preference form iso-orientation patches. One can observe linear zones,

where the orientation preference changes slowly and continuously. Pinwheels are neu-

rons near areas of all possible orientation preferences. The orientation selectivity of
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these neurons is very low. Saddle points lie between pinwheel neurons, and show local

minima of orientation preference in orthogonal direction. At fracture lines, the orien-

tation preference changes rapidly from one orientation to another (Blasdel, 1992b).

Orientation maps have been found in the primary visual cortex of animals such as

macaque monkeys (Blasdel, 1992b), tree shrews (Bosking et al., 1997), ferrets (Rao

et al., 1997) and cats (Löwel et al., 1988; Ohki et al., 2005). There, the general struc-

ture of orientation maps is similar, although for example there is a higher density of

pinwheels in ferrets compared to cats (Müller et al., 2000). In a rat V1 it has been

shown that although neurons are selective for orientation, nearby neurons do not have

preferences for nearby orientations (Ohki et al., 2005).

Using two-photon microscopy, Ohki et al. (2005) have validated the presence of

fractures, as well as pinwheel neurons with a low selectivity for orientation in cats.

(a) Orientation preference map found in V1

of a macaque monkey. An area of 8x6mm

is shown. One can observe iso-orientation

patches, which result in pinwheels where sev-

eral iso-orientation patches come together.

Also, fractures can be seen, which are areas

where orientation preference changes rapidly

from one orientation to a very different orienta-

tion.

(b) Selectivity preference map in V1 of the

same macaque monkey. Darker areas

correspond to less selective neurons,

typically near fractures and pinwheels.

Figure 2.2: Orientation preference and selectivity maps of a macaque monkey primary

visual cortex. Both figures reprinted from Blasdel (1992b).
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2.2.4 Ocular dominance map

Neurons typically prefer inputs from one eye over input from the other eye. At the

same time, most neurons are binocular, i.e. they respond to inputs of both eyes. The

eye preference alternates in stripes (Blasdel, 1992a) or patches (Crair et al., 1997).

Features which are found in orientation maps, i.e. pinwheels, fractures and saddle

points, are not found in ocular dominance maps.

Figure 2.3: Orientation preference map found in V1 of a macaque monkey overlaid

by ocular dominance stripes. An area of 4x3mm is shown. One can see that ocu-

lar dominance stripes and iso-orientation patches tend to intersect orthogonally. The

same neurons have preferences for orientation as well as ocular dominance. Figure

from Blasdel (1992a), reprinted modified as in Miikkulainen et al. (2005).

Ocular dominance maps are found in several species, such as macaque monkeys (Hubel

et al., 1977; Blasdel, 1992a; Blasdel et al., 1995; Horton and Hocking, 1996), cats (Shatz

and Stryker, 1978; Löwel et al., 1988; Crair et al., 1997; Müller et al., 2000) and fer-

rets (Müller et al., 2000). In cats, ocular dominance maps are more patchy compared

to the stripy maps in macaque monkeys. Orientation patches and ocular dominance

patches usually intersect orthogonally in macaque monkeys (Blasdel, 1992a), and are

less pronounced in cats (Müller et al., 2000). Ferrets usually show a weaker relation

between orientation and ocular dominance maps (Yu et al., 2005). Pinwheels usually

lie in the center of ocular dominance stripes (Müller et al., 2000).
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2.2.5 Disparity map

Several studies have shown that the response of neurons in the visual cortex depends on

the disparity, i.e. the positional offset of the stimuli from one eye to the other. In both,

macaque monkeys (Poggio and Fischer, 1977) and cats visual cortex (Barlow et al.,

1967) the response of these neurons were reported. This is thought to be important for

stereo vision, which can be used to detect obstacles or grasp objects.

Barlow et al. (1967) measured vertical as well as horizontal disparity, and found

that the response of neurons is more modulated by a horizontal offset. Some neurons

had a preferred disparity of up to 6.5 degrees of the visual field, whereas most neurons

preferred an offset between 0 and 3.5 degrees.

Unfortunately, to the authors knowledge there has not been an optical image study

measuring disparity, and therefore there is no large-scale disparity map for animals

recorded as yet. A micro-architecture for disparity recorded by two-photon imaging is

shown in figure 2.4.

Figure 2.4: Micro-architecture disparity map in a cat visual cortex. An area of

0.3x0.3mm is shown (note that this is ≈ 100 times smaller than most other maps pre-

sented in this chapter). There, it emerges that on a small scale, disparity preference is

clearly organized. Figure reprinted from Kara and Boyd (2009).
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2.2.6 Direction map

Stimuli can be moved in various directions, and the preferred stimulus direction is

shown in direction maps. These have been found in cats (Ohki et al., 2005) and fer-

rets (Weliky et al., 1996), but not in macaque monkeys (Weliky et al., 1996). Direction

maps are similar to orientation maps, and show many fractures where the preferred

direction changes by 180 degrees.

Weliky et al. (1996) show that orientation and direction maps are closely related.

They find two opposite direction patches within a single orientation patch, whereas

the preferred directions are the two directions orthogonal to the preferred orientation.

They suggest that this is due to the need to represent all orientations and directions in

the cortex. As with orientation maps, direction maps show high continuity. However,

continuity in orientation maps seems more important than continuity in direction maps.

The direction preference may arise from lagged cells in the LGN. Some cells in the

LGN respond to the onset of a stimulus only after a certain delay, which can be 100ms

up to 1s. Nonlagged cells typically respond after 30-80ms (Saul and Humphrey, 1990).

(a) Direction map in V1 of a ferret. An area of

3.2x2mm is shown. One can see the abrupt

changes from one direction preference to

another preference, often by 180 degrees.

(b) Orientation map in V1 of a ferret overlaid

by direction arrows. An area of 1.4mmx1mm

is shown. One can see that within one orien-

tation patch, often two direction patches with

opposite direction preference emerge. Typi-

cally neurons with a low orientation selectiv-

ity, such as pinwheels, also show a low di-

rection selectivity. The direction preference

is usually orthogonal to the orientation pref-

erence.

Figure 2.5: Direction preference map and orientation preference map with overlaid di-

rection preference arrays. Both figures reprinted from Weliky et al. (1996).
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2.2.7 Spatial frequency map

Spatial frequency refers to the number of sine gratings within a given distance. There

are more bars within a unit distance at a high spatial frequency compared to a lower

spatial frequency. As with orientation maps and direction maps, spatial frequency maps

tend to change smoothly and continuously. Most of the studies about spatial frequency

have been made in cats (Issa et al., 2001; Sirovich and Uglesich, 2004; Ribot et al.,

2013; Tani et al., 2012). In Nauhaus et al. (2012) spatial frequency maps of macaque

monkeys are computed.

In the macaque monkey, spatial frequency maps tend to intersect orthogonally with

orientation maps. Just like the relationship between orientation and ocular dominance

maps in macaque, Nauhaus et al. (2012) show that the relation of orientation and spatial

frequency maps is stronger in macaque compared to cats.

(a) Spatial frequency map in V1 of a

macaque monkey. An area of 0.7x0.7mm

is shown. Similarly to orientation maps,

the spatial frequency preference changes

smoothly. However, no pinwheels or other

features commonly found in orientation maps

can be found in spatial frequency maps.

(b) Orientation map in V1 of a macaque mon-

key. The spatial frequency contours are over-

laid in black. An area of 0.7.07xmm is shown.

One can clearly see the orthogonal intersec-

tions of spatial frequency preferences and

orientation preferences.

Figure 2.6: Spatial frequency map and orientation map overlaid with spatial frequency

contours of a macaque monkey. Both figures reprinted from Nauhaus et al. (2012).



2.3. Map interaction 13

2.2.8 Hue map

There is evidence for color selective cells in V1, where color blobs emerge which

respond best to a particular color (Landisman and Ts’o, 2002). Most of the studies

related to color have been made in macaque monkey, see e.g. Landisman and Ts’o

(2002); Xiao et al. (2003); Xiao (2014). Xiao (2014) found overlapping responses in

the visual cortex when stimulated with different colors, whereas “the response peaks

shifted systematically as a function of the stimulus color” (Xiao, 2014).

Figure 2.7: Color selective cells found in area V1 of a macaque monkey. An area of

3.75x3mm is shown. Figure reprinted from Xiao et al. (2007).

2.3 Map interaction

The last section presented all known cortical maps in animals. Here, the interaction of

these maps is discussed. This is important, as the aim of this thesis is to build an all

maps model of the primary visual cortex. Not only should the individual maps match

those found in animals, but also the interaction between these maps.

Selectiveness for a particular feature, such as ocular dominance, is likely to affect

the selectiveness for another feature, such as orientation. This section discusses some

of the experimental findings which support this hypothesis. Furthermore, in regards to

the thesis’ aim to build an all maps model, it is important to note that the previously

mentioned experiments were made in various species, and it is not known whether a

single species is selective for all the spatial features, or just a subset of them.

In the late 1960’s, orientation columns and ocular-dominance columns were found

in macaque monkeys using electrode measurements Hubel and Wiesel (1968). Using

optical imaging, it emerged that they usually intersect orthogonally in macaque mon-

keys Blasdel (1992a). However, in cats and ferrets this relationship is not nearly as
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strong (Müller et al., 2000; Yu et al., 2005).

Furthermore, there seems to be agreement that pinwheels found in the orientation

map usually lie in the center of ocular dominance stripes (Müller et al., 2000). This

suggests a relationship where neurons which are highly selective for ocular dominance

are less selective for orientation. Computational models might help to propose similar

relationships between other spatial maps, which then could be validated in animal

studies.

A clear relationship is also seen between orientation and direction maps. In ferrets,

it has been shown that within one iso-orientation patch there are often two direction

patches, with an opposite direction preference. Also, the direction preference is orthog-

onal to the orientation preference. In Miikkulainen et al. (2005), it is suggested that

in theory direction patches rather than orientation patches could become the largest-

scale organization, in the case animals are raised in an environment with high speeds

of visual motion.

Landisman and Ts’o (2002) show that color patches tend to cross ocular dominance

columns. Also, it seems as if the color patches contain binocular color-selective cells.

The same experiments also suggest that color blobs exclude orientation maps from

forming in the vicinity.

2.4 Map development

This section outlines the cortical map development in animals. There is clear evidence

that cortical maps change considerably in the first weeks and months after birth, and

that visual input partly drives these alterations. The cortical maps in the all maps

model built for this thesis also gradually evolve over time, and therefore discussing

which principles might be responsible for the map development is of great value.

In a comparison of normal cats and cats which lids were sutured before eye open-

ing, it was found that orientation and ocular dominance maps in these cats developed

identically within the first three weeks after eye opening. However, the maps devel-

oped differently after this time. In normal cats, the orientation selectivity remains high,

whereas in binocular deprived cats the selectivity as well as responses to visual input in

general decrease. That suggests that the basic structure of cortical maps exists at birth,

but needs visual experience to stay intact (Crair et al., 1998). Similarly, macaque mon-

keys raised in darkness also form ocular dominance columns (Horton and Hocking,

1996).
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Retinal waves are thought to be responsible for the basic structure of cortical maps

at birth. A retinal wave is spontaneous activity on the retina, and retinal waves are drift-

ing across the retina. By blocking spontaneous activity, the anatomical organization of

ocular dominance columns is destroyed irreversible (Huberman et al., 2006). There-

fore, retinal waves might be “an evolved adaptation (...) imparting an informational

robustness and redundancy guide” (Ackman and Crair, 2014).





Chapter 3

Model background

A computational model of the visual cortex is an implementation of a theory of how

the visual system works. The theory is formed by the experimental findings presented

in chapter 2, and these findings are used to validate the theory. It should also be pos-

sible to make predictions using these models, which then can be verified in animals.

The visual system should be modeled in enough detail so it can be compared to ani-

mal studies, however it should omit everything beyond that so it is simple enough to

understand it (Miikkulainen et al., 2005).

In this chapter, various models resulting in biologically realistic maps are pre-

sented. The models are categorized into three main groups. Each group is presented

individually, and their similarities and differences are pointed out. The chapter also

provides a brief overview of contributions that these models have made for today’s

understanding of the visual cortex.

3.1 Sparse coding

Sparse coding models are closely related to the area of computer vision. There, the

independent component analysis, which is a special case of sparse coding, is widely

used. Although there is no known model covering particularly many input dimensions

simultaneously, the concept of sparse codes are also important for understanding the

GCAL model, and therefore they are presented in this thesis at some length.

Sparse coding is based on the finding that only a small subset of all neurons is active

at any time t, and the pattern of activation represents information in the brain (Rolls

and Tovee, 1995). For each input pattern, a different subset of neurons is activated.

This system can be built in a way so it is optimal for input patterns with known sta-

17
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tistical properties, e.g. natural images (Hyvärinen and Hoyer, 2001). This is thought

to have different advantages in respect to the energy consumption, storage capacity,

and data representation. Furthermore, the coding is simple to decode at subsequent

stages (Olshausen and Field, 2004).

Sparse codes provide a compromise between dense and local codes. Imagine a

set of N binary neurons, i.e. they are either active or inactive. In local codes, each

neuron is only active for exactly one input pattern. Therefore N different patterns can

be represented, which is likely to be a too small number, even for billions of neurons

in a brain. Dense codes are the other extreme, where on average 0.5×N neurons are

active at any time. This would allow the representation of 2N patterns, a far too large

number given the number of neurons in the brain. Therefore, most capacity would be

redundant, and decoding patterns would be extremely difficult as all neurons have to

be taken into account. Sparse codes are in between these two extremes, using a small

fraction of neurons to represent patterns (Földiák, 2002).

Mathematically, an input image I(x,y) is modeled as a superposition of n basis

vectors ai(x,y):

I(x,y) =
n

∑
i=1

ai(x,y)si (3.1)

The si are coefficients which have to be calculated for each image, such that on av-

erage the activation is sparse. This is achieved by fixing the expectation E{s2
i } to a

desired activation value, and then using a convex function G to measure the sparse-

Figure 3.1: This figure compares random samples from a Gaussian variable (top) and

sparse variable (bottom). One can see that the sparse variable is close to zero at

most times, with some large values in between. The Gaussian variable has more non-

zero values, but less extremes. The random observations were made using the same

variance for both variables. Figure reprinted from Hyvärinen et al. (2009).
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ness: E{G(s2
i )} (Hyvärinen and Hoyer, 2001).

In Hyvärinen and Hoyer (2001) it has been shown that a sparse coding algorithm

can account for position, orientation and frequency preference. Using independent

component analysis, it has also been shown how color and disparity preference can

emerge (Hyvärinen et al., 2009). Most of the recent work focuses on application of

sparse representation in more complex visual tasks, such as visual tracking (Zhang

et al., 2013) and image annotation (Liu et al., 2014).

3.2 Elastic net models

The elastic net is a regularization method known from statistics and machine learning.

It has also been employed to build models which result in maps similar to those in

animals, where the focus is trying to determine why cortical maps in biology have the

properties observed in studies, rather than building a visual system (which is the aim

of GCAL).

The elastic net combines the ridge regression and LASSO regularization meth-

ods. Both methods aim to minimize the coefficients of the variables, whereas ridge

regression uses the L2 norm and LASSO regularization uses the L1 norm. In practice,

LASSO leads to sparse solutions, i.e. most coefficients are nearly zero, and ridge re-

gression leads to dense solutions, i.e. most coefficients are non-zero. The elastic net

algorithm also produces sparse solutions, but in comparison to LASSO highly corre-

lated variables all have non-zero coefficients, rather than picking one of the correlated

variables.

In Carreira-Perpiñán et al. (2005) a model based on the elastic net resulting in maps

for positional preference, orientation, ocular dominance and spatial frequency is pre-

sented. There, the elastic net is used to optimize a trade-off of the coverage of the

stimulus space, i.e. “any combination of stimuli values is represented somewhere in

cortex” (Carreira-Perpiñán and Goodhill, 2002), and continuity, for example, retino-

topy or iso-orientation patches. The stimuli are represented as vectors, whereas each

vector entry represents one feature dimension. As in animal studies, pinwheels which

lie in the center of ocular dominance stripes emerge, and maps have the tendency to

intersect orthogonally.

The elastic net also has been used to investigate the differences in maps of various

species. As discussed in 2.2.4, ocular dominance maps are patchier in cats compared

to stripy maps in the macaque monkey. Using the elastic net, it has been suggested
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that this is due to the relative order of the map development. It seems that orientation

maps develop before ocular dominance maps in cats, and vice versa in the macaque

monkey (Goodhill and Cimponeriu, 2000).

3.3 Models based on self-organizing maps

The GCAL models built for this thesis have their origin in the self-organizing map

by Kohonen (1982). First, the original algorithm is presented. GCAL as an extension

to the SOM which can account for more developmental and functional phenomena is

described after, whereas the GCAL model has less artificial limitations, and a higher

degree of biological realism.

3.3.1 Self-Organizing Map

A self-organizing map is a network of neurons, typically arranged in a two-dimensional

grid. Each neuron has a weight vector associated, which maps the usually high-

dimensional input space to the two-dimensional grid. A neighborhood function is

employed so that inputs which only differ slightly are mapped to nearby areas of the

network (Kohonen, 1990). In case of a cortical map, this neighborhood function can

be seen as lateral interaction between neighboring neurons. These have been found

experimentally in animals, see for example Gilbert et al. (1990).

During training, the network learns as follows: First, the activity of all neurons is

calculated as the weighted sum of the input vector V = {v1,v2, ...,vn},v≥ 0 and weight

vector Wi j = {w1,i j,w2,i j, ...,wn,i j}:

ηi j = ‖
−→
V ·−→W i j‖ (3.2)

Then, the neuron (r,s) with the highest activation is determined. This neuron im-

plicitly gets the maximal activity ηmax assigned in equation 3.3. This step is important

so that the whole input space is covered, even for an initially bad match. As the neigh-

borhood function, a Gaussian can be used and the activity for all other neurons is

calculated as follows, whereas (i, j) is the grid position of the neuron:

hrs,i j = ηmax exp
(
−(r− i)2 +(s− j)2

σ2
h

)
(3.3)

The parameter σh controls the width of the Gaussian function, which is gradually

decreased over time. It has to start out large as the initial weights are random, and
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therefore the activity patterns are random as well. Using the learning function in equa-

tion 3.4, the activity pattern is concentrated around the winning neuron after a certain

training period, which then needs a Gaussian which is narrower (Kohonen, 2001).

As learning rule, the mechanism proposed by Hebb is employed, which states that

a connection is strengthened when two neurons fire at the same time (Hebb, 1949):

w′k,i j = wk,i j +αvkhrs,i j (3.4)

Where k is the k-th component of the weight/input vector and α is the learning rate.

Often the normalized version of the Hebbian learning rule is used, where the sum of

the weights is constant. This is necessary so that the weights do not become instable

due to ever-increasing values (Rochester et al., 1956).

Using this version of the self-organized map, a retinotopic mapping emerges when

feeding the network with Gaussian input patterns located at a random position. As in

animals (see section 2.2.2), neurons in the center of the network respond to centrally

located input patterns, neurons at the edge of the network respond to inputs at the edge

of the receptor; and nearby neurons respond to input patterns with nearby location. If

there is a higher probability for certain locations in the input space, there will be more

neurons selective for these locations compared to under-represented locations (Ritter,

1991). To rephrase this: the resources (neurons) are allocated according to the input

distribution, and therefore the statistics of the environment are encoded.

This version of a self-organizing map has certain drawbacks. Firstly, picking a win-

ner is biologically implausible. There is no known mechanism which could supervise

this behavior. Secondly, a full connectivity between the neurons is required, which

is again not biologically realistic. Furthermore, the lateral connections are isotropic,

which contradicts known animal studies, where lateral connections are mainly existent

between neurons preferring the same orientation. It is also unclear how the radius σh

could shrink over time in an animal (Miikkulainen et al., 2005). In addition, the initial

connections on the visual pathway are roughly retinotopic, as axons follow signaling

gradients (Tessier-Lavigne and Goodman, 1996).

The self-organizing map implicitly makes use of two concepts which allow map-

ping of a higher dimensional space to a low dimensional space. The first concept is the

principal surface, which takes advantage of the fact that input dimensions do not vary

independently. For example, the direction of a pattern must be roughly orthogonal to

its orientation so a movement can be seen. As this is often not enough to map the input

into two dimensions, folding is another technique that can be used. There, a curve first
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stretches along the dimensions with the highest variance, and then makes tight turns

across the width of the area to cover the remaining dimensions (Miikkulainen et al.,

2005).

3.3.2 Gain Control, Adaptation, Laterally connected model

The standard GCAL model consists of four two-dimensional sheets:

1. The photoreceptor sheet, which can be fed with any two-dimensional input pat-

tern, e.g. Gaussian patterns or natural images. The activation Ψi(t) of each unit

i at time t typically ranges between 0.0 and 1.0.

2. Two sheets representing the preprocessing done in the retinal ganglion cells (and

transmitted to the lateral ganglion nucleus): One On and one Off sheet, modeling

the difference of light exposure between the center and the surround of retinal

ganglion cells, as described in section 2.1. This is abstracted by Difference-of-

Gaussian afferent connections from the photoreceptor sheet. Each unit in the

On/Off sheets connects to multiple units in the photoreceptor sheet, forming

a receptive field. Neighboring units have different, but overlapping receptive

fields. Units in the On sheet respond to bright areas surrounded by dark areas,

and vice versa. Furthermore, gain control is employed to allow a wide range of

input contrasts.

3. The V1 sheet, which is connected to the On/Off sheets. In comparison to the

self-organizing model, each unit only connects to a small area of the On/Off

sheets. Units also connect laterally to surrounding units in V1, with short-range

excitatory as well as long-range inhibitory connections. These lateral connec-

tions sharpen the response. The inhibitory connections are non-isotropic, allow-

ing representation of long-term correlations of the input patterns. Furthermore,

the encoding is more efficient using lateral connections, as redundancy in the

input is suppressed, which then allows detecting changes in the input more effi-

ciently (Sirosh et al., 1996).

For the LGN sheets, gain control is employed, which ensures that the model is

robust for varying input contrast. The activation η j,O(t +δt) of a LGN unit at position

j on sheet O for time t +δt is calculated as follows:

η j,O(t +δt) = f

(
γO ∑i∈Fj,P Ψi(t)ωi j

k+ γS ∑i∈Fj,S ηi,O(t)ωi j,S

)
(3.5)
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Where f is a half rectangle, ensuring that the response is always positive, γO is

a boost factor chosen so that the unit activation is normally between 0.0 and 1.0. F

denotes the projection fields, FP for the afferent projection and FS for the lateral con-

nections, which suppress highly active units. k ensures that the denominator is always

positive, and γS is a rescaling factor. The weights ωi j from unit i in the photoreceptor

sheet to unit j in the On/Off sheets is given by a Difference of Gaussians, with a smaller

center and wider surround. For the On sheet, the surround is subtracted from the center

and vice versa. For the exact values of the constants, see Stevens et al. (2013).

Units in V1 receive afferent connections A from the On/Off sheets, lateral excita-

tory connections E from surrounding sheets, and longer range lateral inhibitory con-

nections I. The initial activation is calculated purely from the afferent connections,

which have an initially Gaussian shape. Then, there are several settling steps which

purely depend on the activation of the surrounding sheets. The activation η j,V (t) of V1

unit j at time t is the half-rectified sum of the activity of the projections p = (A,E, I):

η j,V (t) = f

(
∑
p

γp ∑
i∈Fj,p

ηi,p(t)ωi j,p

)
(3.6)

With ηi,p(t) as the activation of the afferent/laterally connected units, ωi j,p as the con-

nection strength from unit i to unit j for projection p and γp to weight the different

connection types. Here, f has a variable threshold aiming to bring the average of

the activity values of a unit to a desired value. For the detailed adaptation process,

see Stevens et al. (2013).

Then, a normalized Hebbian learning rule with learning rate α is employed to up-

date the weight ωi j,p from unit i to unit j of projection p:

ωi j,p(t) =
ωi j,p(t−1)+αη jηi

∑k
(
ωk j,p(t−1)+αη jηk

) (3.7)

Using this basic model, biologically realistic orientation maps result for a wide

range of input contrasts. The map development is stable, i.e. only after a relatively

short training, the maps have similar properties to those found in animals. Furthermore,

statistics in the input patterns are reflected on the resulting maps. This is demonstrated

by simulating a goggle-reared environment, where one orientation is dominating the

visual scene (Stevens et al., 2013).
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(a) Network structure of the basic GCAL model, with

one photoreceptor sheet which projects into one On

sheet and one Off sheet. The extend of the connection

fields are shown with orange cones. Red circles repre-

sent lateral connections. For the On/Off sheets, these

are as wide as the connection field projection down

from a single V1 unit. For the V1 sheet, the lateral ex-

citatory connections are shown with the smaller circle,

and the inhibitory connections are shown with a wider

circle. Figure reprinted from Stevens et al. (2013).

(b) Resulting orientation map

in GCAL. The histogram shows

that all orientations are equally

represented.

Figure 3.2: Structure of the basic GCAL model, and resulting orientation map when

Gaussians are used as input patterns.

3.3.3 Multiple maps using GCAL

Earlier studies using the predecessor of GCAL, the Laterally Interconnected Synerget-

ically Self-Organizing Map model (LISSOM), it has been shown that using the same

principles as introduced above, it is possible to explain a wide variety of cortical maps.

Here, the methods which were used to extend the basic LISSOM model to model mul-

tiple maps are presented together with the corresponding papers.

Orientation + Color

For color simulations, multiple retina sheets are used, each of them representing a

particular cone type. For a dichromatic simulation, one sheet for medium wavelength

(green) and another sheet for long (red) wavelength are used. Rather than just one pair
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of On/Off sheets, three pairs of these sheets are required. One pair with units which get

their center afferent input from the green photoreceptor sheet, and their surround from

the red photoreceptor, and another pair where the center and surround is swapped, as

well as a pair of luminosity sheets which is connected to both photoreceptor sheets.

The units in V1 connect to all sheets (Bednar et al., 2005).

Units in V1 typically become selective for either orientation, or one of the color

channels. That is, if a neuron is highly selective for orientation, it has nearly no pref-

erence for color. Similarly, if a neuron is selective for a specific color, it is neither

selective for other colors nor for orientation.

(a) Required sheets and projections for a color simula-

tion. In comparison to the basic LISSOM/GCAL model,

there are several photoreceptor sheets representing the

various cone types found in animals. They project into

two pairs of LGN sheets which are color-selective and

one pair of luminosity sheets which equally receives input

from all photoreceptor sheets.

(b) Resulting orientation map,

whereas color blobs are sur-

rounded by black lines. Color

blobs have a low orientation se-

lectivity, which is denoted by

brighter colors.

Figure 3.3: LISSOM model for a dichromatic color simulation and the resulting maps.

Both figures reprinted from Bednar et al. (2005).



26 Chapter 3. Model background

Orientation + Spatial frequency

To model spatial frequency, the visual pathway again has to be modified. Similarly

to the color model, further LGN sheets have to be introduced. For spatial frequency,

each spatial frequency channel (consisting of an On/Off sheet pair) has a different size

of receptive fields in the photoreceptor sheet. Therefore, the channels have varying

selectivity for different frequencies of the input pattern. This also implies that the sizes

of the sheets differ between the channels because of the required edge buffering.

It has been found that the spatial frequency range widens if a unit in V1 only

connects to one of the spatial frequency channels rather than all of them (which is

achieved by pruning the weak connections after an initial training), however this comes

with the cost of distorted orientation maps (Palmer, 2009).

Figure 3.4: Resulting spatial frequency map and orientation map of a LISSOM simula-

tion with multiple LGN sheets selective for different spatial frequencies of the photore-

ceptor sheet. Figure reprinted from Palmer (2009).

Orientation + Ocular dominance + Direction

The model presented in Bednar and Miikkulainen (2006) extends the basic LISSOM

model by two dimensions, ocular dominance and direction. To model ocular domi-

nance, two retinas are used, corresponding to the two eyes of mammals. Ocular domi-

nance maps result from brightness differences, i.e. the input pattern is brighter in one

of the two eyes. The brightness difference is randomly distributed, in a way that the

activities sum up to 2.0.

Direction preference is achieved with multiple lagged LGN sheets. The input pat-

tern first arrives at lag N = 3 at time t, and is then moved slightly before lag N− 1 is

activated at time t +1 and so forth. These differences in time result in spatiotemporal
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fields. This is described in more detail in section 4.3, where also other ways to model

motion are presented. Also, in figure 4.1a the model structure is shown.

In Miikkulainen et al. (2005), it has been shown that differences in the pattern

location between the eyes, also known as disparity, does not result in biologically

realistic ocular dominance maps. Disparity would be a more intuitive way to model

ocular dominance, as animals encounter this every day due to the displacement of the

eyes, as opposed to non-intuitive dimming differences.

In Burger and Lang (1999) and Burger and Lang (2001) a model which has a very

similar structure to this model is presented, however does not implement direction

maps. Using random stimulus patterns (in contrast to Gaussian input patterns / natural

images used in LISSOM/GCAL), orientation and ocular dominance maps emerged.

All maps model

In a previous project, LISSOM was used to build an all maps model. This model shows

that in principle it seems possible to combine all cortical maps found in animals in a

single simulation. Basically, the presented models of section 3.3.3 are all combined

into one model. One exception is a different motion model which was used in this

simulation, which uses several lagged retina sheets rather than lagged LGN sheets (see

4.3). This is biologically not plausible and computationally expensive, as per lagged

retina the corresponding lagged LGN sheets have to be added to the simulation as

well (Gerasymova, 2009).

When simulating all dimensions, the model complexity is tremendous. There are

24 retina sheets, resulting of 2 eyes * 4 time lags * 3 cones. Per time lag and eye,

there are eight LGN sheets for color processing and two LGN sheets modeling spatial

frequency, so in total 2∗4∗(8+2) = 80 LGN sheets. The model structure is not shown

in a figure due to the high complexity, which can be reduced significantly, as shown in

section 5.9.

Besides the high complexity and the biologically unrealistic lagged retina sheets,

the model has certain other drawbacks. The combination of the ocular dominance and

color dimensions is not realistic, as the brightness difference to model ocular dom-

inance is applied per color channel in the RGB color space. This means that if the

activation of the red channel in the left eye is RLe f t , then the activation in the right eye
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is calculated as RRight = 2.0−RLe f t . As this is done for each channel, the hue1 for a

specific unit differs between the left and right eye. This leads to a strong change in the

color map, where the preferred hue is shown.

From a software point of view, the model is highly inflexible and difficult to main-

tain. The various components cannot be easily replaced, for example, it is not possible

to use GCAL instead of LISSOM.

A unified model which is much more comprehensive and also models of all known

cortical maps has been suggested in Bednar (2012), however this paper reports results

from different models covering subsets of all dimensions. An implementation is de-

scribed as “very much a work in progress” (Bednar, 2012) and is aim of this thesis.

The proposed model contains only three sheets per eye, one per cone type, compared

to the 12 retina sheets in the work from Gerasymova (2009). Because motion is mod-

eled with delayed projections from the LGN to V1, only 20 LGN sheets are required.

The model structure is not shown in a figure as it is very similar to the combined model

presented in section 5.9.

In this thesis, the focus is on replicating maps which are similar to those found in

animals. The paper by Bednar (2012) shows how a unified model could also explain a

variety of other findings, such as contrast-invariant tuning, the properties of simple and

complex cells in the cortex and aftereffects. However, these explanations are beyond

the scope of this thesis.

Input patterns for multiple map simulations

In the previous section, it has been shown how the basic GCAL model can be extended

to cover various dimensions. This usually requires the extension of the model with

retina and/or LGN sheets. However, besides adjusting the model structure, the input

patterns have to be adjusted as well. For example, if the input patterns of the left and

right eye are exactly the same, no ocular dominance map will develop. Even in the

basic GCAL model an orientation map only emerges because the orientation of the

Gaussian input patterns is random (Miikkulainen et al., 2005).

For ocular dominance simulations, the brightness of the input patterns has to vary.

A related but different input dimension is known as disparity. A disparity map emerges

only in the case the pattern locations in the left and right eye differ. For the motion

1The hue value of the color is a measure where the color is found in the color spectrum, indepen-
dently of its brightness which is encoded in the value or lightness and the pureness which is described
by the saturation in the HSL/HSV color spaces (Joblove and Greenberg, 1978).
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model, the input pattern has to be moved over time. Similarly, the spatial frequency of

input patterns has to vary so that a spatial frequency map emerges. As for color, these

dimensions are inherent to natural images.

Here, the fact that the input statistics are reflected on the resulting maps has to

be stressed. For example, if cardinal orientations are overrepresented in the input,

as they usually are in natural images, then more neurons become selective for these

orientations, compared to underrepresented orientations (Stevens et al., 2013).

For the GCAL model, any artificial two-dimensional input patterns such as two-

dimensional Gaussians or natural images can be used. Using Gaussian patterns has the

advantage that the parameters can be controlled more easily.

3.4 Open questions

Although computational modeling has successfully been used to provide various hy-

potheses of how the visual system in general, and cortical maps in particular, might

evolve and what their function might be (see Goodhill (2007); White and Fitzpatrick

(2007); van Ooyen (2011) for reviews), there are still many open questions. Here, two

of them have been chosen which are particularly interesting because it may be possible

to provide an answer using an all maps model.

Using vector-like inputs similar to the ones which are used in the elastic net, the

self-organizing map was applied without modifications to model multiple maps. In the

paper by Swindale (2000), the question is raised how many maps can be represented in

the two-dimensional visual cortex. This is important, as there might be undiscovered

cortical maps. Furthermore, this would allow statements about the interaction of maps.

With theoretical assumptions beyond the scope of this thesis, the author suggests that

there might be an upper limit of nine or ten maps. The interested reader might also

want to read a follow-up study in Swindale (2004).

The same author proposes that maps might be optimized for uniform coverage, i.e.

whatever combination of input features one presents to the cortex, the total neural re-

sponse is independent of this combination (Swindale et al., 2000, 2002). However, an-

other study doubts that the way coverage was measured was correct (Carreira-Perpiñán

and Goodhill, 2002). Whether the assumption of uniform coverage is correct or not

remains an open question, and a model of all known spatial maps could be used to

develop this further.
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Architecture

This chapter introduces three main concepts necessary to build an all maps model in

Topographica, a software for simulating cortical maps (Bednar, 2009).

It is crucial to generate patterns which cover all dimensions one wants to model,

due to the input-driven self-organization of the model. With the former implementation

it was difficult to generate complex patterns, and hard to extend more dimensions.

Here, the concept of feature coordinators is introduced, whereby each coordinator adds

one more dimension. The pattern coordinator acts as a convenient wrapper to use the

feature coordinators.

The submodels machinery is one of the main contributions of this thesis. Automatic

wiring of sheets, easier setting of parameters and the ability to modify and inspect the

model structure before instantiation are a few of the advantages gained by using this

new concept. The superiority of this implementation over the previous is especially

obvious for models with many sheets and projections between them. The old results

can be replicated if needed, but it becomes much more clear how the model structure

emerges in the new system.

The last concept discussed is a new motion model. Direction maps can emerge

in many types of temporal delays within the model. Previously, this has been done

with a set of lagged retina sheets or a set of lagged LGN sheets. Here, following the

suggestion in Bednar (2012), multiple projections with increasing delays from LGN

sheets to V1 are used to model motion.

31
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4.1 Pattern generation

As described in section 3.3.3, it is crucial that input patterns cover the feature dimen-

sions one wants to model. In the case of Gaussian input patterns, for example, the

model of V1 will not develop orientation-specific neurons if all Gaussian patterns are

oriented the same way. On the other hand, if one only wants to model position prefer-

ence (without orientation preference), it is important that all Gaussians have the same

orientation. Using oriented Gaussian patterns does, however, alter the position pref-

erence map. In order to build a model that covers various feature dimensions, it is

therefore crucial to have a mechanism that allows the ability to specify the needed fea-

ture dimensions of the input patterns, and the synthesis of the feature dimensions (if

needed). For this thesis, two concepts called feature coordinators and pattern coordi-

nator have been implemented, and they are described in detail in this section.

4.1.1 Feature coordinators

A feature coordinator modifies an input pattern in some way, and returns the modified

input pattern. A feature is something coordinated between input patterns. This could

be either a parameter of an input pattern (such as the size), or a variable from which

values for an existing parameter can be calculated (such as a position offset). Each

input to the model can consist of one or more overlaid input patterns.

Each feature coordinator synthesizes exactly one feature dimension. This allows

any arbitrary combination of feature dimensions by applying the desired feature coor-

dinators in a serial manner (see section 4.1.2). By supplying the name of the pattern

generator to the feature coordinators, it is possible to coordinate a set of patterns across

multiple retinas.

Position feature coordinators

The position feature coordinators are necessary in order to develop a position prefer-

ence map. There are two position feature coordinators, one for modifying the x coor-

dinate of a supplied pattern and the other for modifying the y coordinate. By default,

the position is altered around the point of origin by a uniform random number (within

set bounds) provided as a parameter.
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Orientation feature coordinator

The orientation feature coordinator modifies the orientation of a supplied pattern, by

default to a uniform random number between -π and +π. This allows development of

an orientation map.

Spatial frequency coordinator

The spatial frequency coordinator varies the sizes of the input patterns in order to

develop a spatial frequency map. Two parameters are supplied to this coordinator: the

spatial frequency spacing Γ and the highest spatial frequency channel υmax. The spatial

frequency spacing corresponds to the factor by which successive spatial frequency

channels increase in size. The size of the supplied input pattern is multiplied by a

uniform random number between one and Γυmax . This corresponds to sizes which suit

the receptive fields of the spatial frequency channel with the smallest receptive fields

up to sizes which suit the channel with the biggest receptive fields.

Motion feature coordinator

The motion coordinator sweeps the supplied pattern orthogonal to its orientation. At

each time step, the pattern is moved further. The speed of the sweeping can be adjusted

by a parameter, as can the amount of time required before showing a new pattern to

the model. Further details are explained in section 4.3.

Dimming feature coordinator

In order to get realistic ocular dominance maps in GCAL based models, it is necessary

to introduce dimming differences of patterns in the left and right retina. This will be

discussed in more detail in section 6.3. Dimming differences can be achieved with the

dimming feature coordinator. The coordinator can only be used with two retinas, and

is implemented such that the brightnesses of the two input patterns add up to 2, i.e. if

the brightness of the left input pattern is 0.7, the brightness of the right input pattern

must be 1.3. The fraction by which the pattern brightness varies between the two eyes

can be supplied as parameter, and is again created within a uniform random number

generator.
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Disparity feature coordinator

The disparity (difference of pattern locations) of two input patterns is coordinated by

the disparity feature coordinator. Currently, this only works for horizontal offsets, but

could be easily extended to allow vertical offsets as well. In practice, the x-coordinate

of the input pattern is shifted to the right in one retina, and by the same amount to

the left in the other. The amount of shift is controlled by a uniform number generated

between zero and a parameter ξmax.

Summary feature coordinators

This section introduced the concept of feature coordinators and described each feature

coordinator in detail. The coordinators can be applied in any arbitrary order because

the parameters of the supplied patterns are not overridden, but modified. The only

exception is the motion coordinator, which has to be applied after the orientation coor-

dinator, because the motion is calculated orthogonal to the orientation of the pattern.

The implemented coordinators can synthesize most input dimensions, except for

color. However, adding more feature coordinators is straightforward due to the com-

mon interface and atomic operation of each individual feature coordinator. A mathe-

matically more precise definition of the feature coordinators can be found in the corre-

sponding sections of chapter 5.

4.1.2 Pattern coordinator

The pattern coordinator is a newly introduced concept which allows using the feature

coordinators presented earlier in a user-friendly way. The pattern coordinator is a class

which can be instantiated, and the only required parameter on instantiation is a list of

the desired dimensions to be contained in the returned input patterns. Internally, there

is a mapping to a particular feature coordinator for each dimension. Furthermore, one

can specify the names of the returned input patterns, which implicitly allows setting of

the number of input patterns.

Initially, each input pattern is created with default parameters; and all parameters

set to their default values. E.g. the x, y and orientation parameters are all set to 0.

The appropriate feature coordinators are then applied to these input patterns, which

gradually synthesizes more and more dimensions of the patterns. Finally, the individ-

ual patterns are passed to a composite generator, which returns the input pattern. It

is worth mentioning that this concept is general with respect to the number of input
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patterns returned, i.e. more than two input patterns can be created, thus allowing the

modeling of animals with more than two eyes, e.g. three-eyed Rana pipiens (Reh and

Constantine-Paton, 1985).

Pattern coordinator for images

In order to use images as inputs, a special class has been defined. This class allows the

reading of all images from a specified folder, and the building of input patterns from

them. Because some of the dimensions are inherent to images, the corresponding fea-

ture coordinators are skipped - namely, the orientation coordinator, color coordinator

and spatial frequency coordinator are skipped by default.

The pattern coordinator for images also allows the filename of the images to be

specified with templates. This is useful in the case that even more dimensions are

inherent to the image dataset. For example, the scenario in which one folder is not

enough to ensure the relationship of the corresponding left and right images in a stereo

image dataset is maintained. This can be circumvented by using filename templates

with patterns that are replaceable depending on whether the pattern is used as left or

right input pattern. Because the concept is very general, this not only applies to stereo

image datasets, but also to videos supplied to a model as successive images.

Summary pattern coordinator

The pattern coordinator provides default implementations with a standard set of pa-

rameters for common manipulations of input patterns. This has the advantage that the

modeler does not need to specify them in detail. However, if needed, the modeler can

override the behavior of certain feature coordinators by setting their parameters appro-

priately, or even decide to implement a new feature coordinator for a certain feature.

In general, this is not needed, and therefore a high-level interface to input patterns was

created.

This also reduces the duplication of code considerably where, previously, input

patterns were created within the model files. When creating a new model, the input

pattern generation was usually copied from another file for convenience and then al-

tered to ensure the desired dimensions were covered. Therefore, the input pattern gen-

eration was duplicated across models, but contained many small differences depending

on the used image dataset, the number of eyes, and whether, for example, motion was

modeled. This approach was very fault prone.
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Using the pattern coordinator class, a new instance of the class can be created,

and the desired dimension for modeling is the only required parameter. Switching to

an image dataset from an artificial stimuli such as Gaussians is also straightforward,

as the only change necessary being the instantiation of an image pattern coordinator

class rather than a normal pattern coordinator class. The parameters do not need to be

changed. This also allows the comparison of the resulting maps of different models, as

one can enforce the use of exact same input patterns across models.

4.2 Submodels

In section 4.1, a method for unifying the input patterns across model files was pre-

sented. Here, a mechanism to reuse so-called submodels across various models is

described. This reduces the code duplication to a minimum while, at the same time,

making differences across models easily visible. Furthermore, it allows for the param-

eters of the model to be changed before instantiation, and the structure of the model

can be explored before model instantiation. This is important, as instantiating a model

is expensive in terms of both time and memory consumption.

4.2.1 Previous implementation

So far, a model was created in a single file typically consisting of the following sec-

tions:

1. Import declarations

2. Input pattern generation

3. Sheet instantiation

4. Connecting sheets

5. Setup of analysis methods

The first section was typically shared across all model files, and imported various

classes from Topographica.

The second section was similar across the model files, but with slight differences

depending on the dimension one wants to model, as described in 4.1.2.

In the third section, the modeler had to create sheet instances. This involved deter-

mining the number of sheets, the particular sheet types to use, and passing the desired

parameters to the sheets. This is a relatively simple procedure when the model con-

sists of just a few sheets, but becomes very complex for a model covering many input
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dimensions, as the number of sheets increases quickly. Typically this has been done

with nested loops - once dimensions could be enabled/disabled with parameters, the

increased complexity necessitated the addition of many conditional statements.

The created sheets were connected in the fourth section. Again, this required a

complex set of operations containing various nested loops and conditional statements

in more complex models. The parameters for the connection had to be passed to each

connection statement, which resulted in duplicated code even within a model file. For

example, a spatial frequency sheet was connected to the V1 sheet with exactly the same

parameters as any other LGN sheet, the only difference being the size.

The fifth and final section involved setting up the measurement process, and was

usually rather short. This, however, differed between the model files, as models cover-

ing more dimensions also have a more complex measurement setup.

4.2.2 Using a hierarchy of submodels

To avoid code duplication across models as described previously, the concept of sub-

models is introduced. The most general submodel, Model, provides a structure which

has to be fulfilled by all subclasses, as well as a set of helper functions. These loosely

correspond to the sections of the old model files as described in 4.2.1. Subclasses of

Model then gradually become more specific through the implementation of more and

more methods and the addition of more parameters. For example, in VisualInput-
Model, parameters shared by models that receive visual input are added. This includes

the input contrast and the area modeled by the cortex, amongst many others. Also, this

class calls the pattern coordinator for input pattern generation.

Starting with an early vision model, the concept of levels is used. A level is a set of

sheets in which the sheets within a level share most parameters and match conditions

which are described later. In practice, the early vision model consists of two levels:

Retina consisting of one or two retina sheets, and LGN containing at least two sheets,

LGN On and LGN Off, but likely containing more sheets in complex models.

Rather than using nested loops, a product is used to specify the number of sheets.

This might look as follows:

’Retina’:args[’eyes’],

’LGN’: args[’eyes’] ∗ args[’polarities’] ∗ args[’SFs’]

The first line creates a level “Retina”, containing as many sheets as the list “args[’eyes’]”

contains entries, and labeled with the entries of this list. The second line creates the
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“LGN” level. In the simplest case, where “args[’eyes’]” and “args[’SFs’]” are lists

with just one entry and “args[’polarities’]” is a list with the entries “On” and “Off”,

this statement creates only two sheets. However, if “args[’eyes’]” contains the entries

“Left” and “Right”, “args[’polarities’]” is a list as before, and “args[’SFs’]” contains

the entries “1” and “2”, eight sheets are created.

This is a huge improvement over using nested loops, which could sometimes reach

up to 5 levels deep. For each of the levels, one method specifying the parameters of the

level has to be implemented. Internally, this method can slightly adapt the parameters

depending on the properties of the actual sheet. This avoids duplicating code. Here,

the most general version of the Retina and LGN levels has been implemented. By

setting the dimensions parameter of the early vision model accordingly, a very general

version with over 20 sheets in total (see section 6.9), or a subset of this model with the

basic GCAL model as the simplest model (see section 3.3.2) with just one sheet on the

Retina level and two sheets on the LGN level, can be created using the same class.

The early vision model can be used by any model of the cortex. In this thesis,

GCAL has been set up on top of the early vision model. However, the concept is gen-

eral, and any other visual cortex model could also use the EarlyVisionModel. For

GCAL, another level called V1, which consists only of one sheet with the same name,

is introduced. Because the early vision model is used, code duplication across model

files is avoided. Import declarations, training patterns and sheet instantiation are now

taking place within one specific class shared across all models rather than being per-

formed individually per model file. The following section shows how creating connec-

tions between sheets can be considerably simplified.

4.2.3 Automatically wiring up sheets

Traditionally, connections between sheets were explicitly stated using a connect com-

mand with the source sheet, the destination sheet, and the projection parameters as

arguments. This again was usually done with nested loops. Using this machinery,

it was hard to understand which sheets got connected, and extending this procedure

to more sheets was fault prone. Here, match conditions set per level are proposed to

specify the connections.

Before describing the match conditions, another concept of sheet properties needs

to be introduced. This is a generalized version of a sheet name. A typical sheet name

is LeftLGNOn, whereas Left refers to an eye, LGN refers to the sheet level and On
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refers to the polarity. A sheet property allows each of those parts to be set and accessed

individually.

Match conditions are defined per level. Each match condition consists of a set

of criteria which must be fulfilled by an incoming sheet. As a simple example, V1

connects to all LGN sheets. Therefore, the only criteria is:

{’level’:’LGN’}

To specify the match conditions, the properties of the sheet for which the match condi-

tion is specified can be used, e.g. connecting LGN sheets with a property eye to retina

sheets of the same eye is implemented as follows:

{’level’: ’Retina’, ’eye’: properties[’eye’]}

There, properties[’eye’] refers to the eye of the LGN sheet. This can easily be extended

to also work in the case that only one eye is used, and therefore properties[’eye’] does

not exist. Furthermore, it is possible to specify more than one match condition. This

allows very specific connections, as well as connecting to different levels, e.g. there is

usually one match condition for afferent connections and another match condition for

lateral connections.

Within the Model class, a method that automatically checks whether a match con-

dition holds and connects sheets has been implemented. For each pair of sheets, there

is a test whether the source sheet fulfills all criteria in one of the match conditions of

the destination sheet. If so, a connection between the two sheets is created. If none,

or just a subset of the criteria are fulfilled, no connection is established. Because this

method is implemented in a general manner, rather than explicitly connect sheets, all a

modeler need do is create match conditions.

There is one method per match condition to specify the parameters of the projection

in the case of a match. To adapt the parameters to the specific connection, the properties

of the source as well as the destination sheet are passed to these methods.

4.2.4 Deferred model instantiation

By introducing specification classes for sheets and projections, which act as templates

for actual sheet and projection instances, it is possible to investigate the network struc-

ture as well as the parameters of the sheets and projections, before instantiation. This

is desirable when e.g. running many simulations in a batch mode with varying network

structure. This is useful in order to be able to record the responses of all sheets, as the
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names of the sheets have to be known before they get instantiated. This only becomes

feasible using specification classes.

Even if the network structure across various simulations stays constant, one might

want to change a specific parameter of a projection. Again, previously this was not

possible, and only became feasible by introducing the specification classes. A resolve

method allows accessing the actual sheet/projection after the specification object has

been instantiated.

Models are now classes which can be instantiated. To instantiate a model, the

model object is called. This internally calls all the specification classes which auto-

matically instantiate actual sheets and projections between them.

4.2.5 Summary submodels

The introduction of submodels has greatly improved the work-flow of a modeler using

Topographica. Modelers now have access to an early vision model and can build their

model of the primary vision model on top of it. Alternatively, the GCAL model has

been implemented and can be modified. The code duplication will be cut down to a

minimum once all models have been changed to use the new system. Comparing mod-

els is now much easier than before, as the model files no longer need to be compared

as a whole. Using the class-based approach, instead, a subclass should explicitly list

all the modifications to the base class.

The machinery is set up in such a way that various cortex models can be used on

top of the same retina and LGN sheets. Also, one can imagine that the set of LGN

sheets is replaced by a single sheet with neurons which are randomly generated by

choosing a certain number of units in the center, along with a non-specific surround

(see Kneisel (2013)). Such a model could build upon the visual input model, replace

the early vision model, and ModelGCAL could inherit from the new model, but would

not need to be changed in other ways.

The implementation of submodels is currently based on inheritance. That is, a

cortex model is inherited from the early vision model, and extends its functionality by

adding a cortex level. In theory, this also allows the addition of higher visual areas on

top of V1, by inheriting from the submodel that includes V1.

A limitation of the inheritance-based approach is that multiple models, all inherit-

ing from the same submodel, cannot currently be combined. Imagine a model which

adds V2 on top of V1, and another model which adds the visual area MT on top of
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V1. These models are currently incompatible, and therefore cannot be combined. This

could be circumvented by connecting submodels not via inheritance but, rather, in the

actual model file as components. This would require substantial changes, as attributes

would not be shared between the classes anymore. Instead, they would need to be

communicated across the components.

The match conditions are of great importance for models covering many input di-

mensions, and hence a large number of sheets with complex wiring. These allow the

properties of sheets to be specified such that each sheet allows incoming connections

from other sheets. This not only simplifies the wiring up of the sheets, but also allows

a single set of parameters associated with a match condition, rather than having the

parameters spread over the model file.

Because of the helper functions introduced in the Model class, the modeler’s main

focus is shifted to deciding which sheets the model should include, which parameters

these sheets should have, and which parameters the projection connecting the sheets

should have. Previously, all those decisions still had to be made, but they were mixed

with code. The submodels machinery allows defining parameters more explicitly, as

parameters are now class attributes.

4.3 Motion model

Neurons only become selective for motion if temporal delays are introduced to the

model. These delays correspond to the lagged cells found in cat LGN (see section

2.2.6). There are various ways to implement this in a model.

4.3.1 Previous proposals

In Topographica, a motion concept based on lagged retina sheets has been implemented

(Gerasymova, 2009). For each retina sheet, the input is swept further. For each retina,

there is one LGN On sheet and one LGN Off sheet. For example, if one wants to model

four motion lags, four retina sheets and eight LGN sheets are needed.

In the paper from Bednar and Miikkulainen (2006), it is shown how lagged retina

sheets can be avoided. There are only two retina sheets (modeling the left and right

eye), however they change their pattern over time. At time zero, the first LGN sheet

with the highest lag computes its activation. At each further time step, the input pattern

on the retina sheets is swept in a certain direction, and the activation of subsequent
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LGN sheets with lower delay is computed. Once all LGN sheets have been activated,

the responses are propagated to the V1 sheet. This is much more realistic than having

multiple retina sheets representing motion.

(a) Model with two retina sheets, one for the

left eye and one for the right eye. Temporal

delays are added at the LGN level. Reprinted

from Bednar and Miikkulainen (2006).

(b) Model with several lagged retina sheets,

which introduce temporal delays that are

propagated to corresponding LGN On and

Off sheets. Reprinted from Gerasymova

(2009).

Figure 4.1: Previous proposals to model motion selectivity.

4.3.2 New approach: Multiple projections from LGN sheets to V1

The idea from Bednar and Miikkulainen (2006) has been taken further for this thesis.

Rather than modeling multiple LGN sheets representing lagged cells, just one LGN On

and one LGN Off sheet is contained in the model. Each sheet has multiple projections

to V1, and each projection has a different delay. That means that the activation in V1

is gradually built up over time. This concept had first been proposed in Bednar (2012),

but was not yet implemented.

Although a prototype for this new representation of temporal delays existed previ-

ously, it had severe issues. As described in sections 4.1.1 and 4.1.2, there are several
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advantages to sequentially applying feature coordinators in order to generate input pat-

terns. This was not possible with the prototype, as all parameters needed to be set on

the class handling motion. It was not possible to pass an input pattern to this class, and

get a moved pattern returned.

In this thesis, the prototype has been improved to work properly with any kind

of input patterns. Usually, the pattern is swept orthogonally to its orientation, but in

theory any motion direction can be applied on arbitrary input patterns. This is done by

generating a new input pattern on the supplied pattern generator only every n-th time

step, rather than for each time step. At the first time step, the input pattern is returned

as is. At the second time step, it is swept aside in the desired direction, and so on.

This implementation has the advantage that the model structure does not need to

be changed in order to represent temporal delays. It looks exactly like the basic GCAL

model described in 3.3.2; however, it has been extended with multiple projections from

LGN sheets to V1, which allow modeling motion. In section 6.5, it is shown that this

representation of temporal delays results in qualitatively similar results compared to

the previous proposals.

4.4 Discussion

This section critically analyzes the feature coordinators, the pattern coordinator, and

the class-based submodels system introduced in this chapter. Strengths and limitations

are highlighted, and suggestions for improvements and extensions are given.

4.4.1 Feature coordinators

Feature coordinators are a very general concept. A feature coordinator is supplied an

input pattern and expected to modify this pattern in a certain way, returning a new

pattern based on what was supplied. This concept is very powerful, and has proven to

successfully synthesize the following dimensions: position, orientation, direction, spa-

tial frequency, dimming and disparity. A challenge for the future will be synthesizing

color for mathematically defined inputs such as Gaussians - this is challenging due to

the complex nature of the task, not because a feature coordinator is too general or too

limited in its capabilities (see section 7.2.4).

From an implementation point of view, it is challenging to transfer this concept to

measure maps. This is the inverse problem to the generation of training input patterns.
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As part of Topographica, the feature mapper concept exists; its job is to coordinate

the presentation of patterns and measure of the responses. Within feature mapper, a

similar hierarchy of methods exists which creates patterns that vary in a certain way.

It is desirable that feature coordinators are used within feature mapper in the future,

although this would require substantial work. Rather than randomly varying feature

dimensions for training inputs, the dimensions need to be varied in a deterministic way

to measure responses.

In summary, feature coordinators have improved the input pattern generation con-

siderably. A clear, extensible hierarchy of feature coordinators evolved from an ad-hoc

way of defining input patterns with a lot of random number generators bundled to-

gether. Generalizing this concept even further to also measure maps is future work.

4.4.2 Pattern coordinator

The pattern coordinator class provides a convenient interface to the feature coordina-

tors described above. Furthermore, it is designed to work with artificial stimuli such

as Gaussians as well as images to be read from a folder. This allows modelers to use

predefined input patterns rather than having to define patterns themselves. They can

choose from a wide range of dimensions that the pattern should have. Furthermore,

changing from artificial stimuli to natural image inputs is now straightforward, as all

that needs to be changed is using the subclass PatternCoordinatorImages rather than

the superclass PatternCoordinator directly. The parameters can be kept the same,

except that a folder for the image dataset needs to be supplied.

This is superior to the previous definition of input patterns, where specifying the

dimensions to be covered had to be done with conditional statements. Also, the in-

put patterns often varied between models even if the same dimensions were covered,

because the seeds for the random number generators were set differently. The pattern

coordinator provides a standardized interface, and random streams are guaranteed to

be the same even if used in different models.

One drawback is that only the individual patterns, but not the composite input

pattern generated of the individual patterns, can be modified, e.g. it is not possible to

sweep the whole pattern in a certain direction, but only the individual patterns. This

could be addressed in future extensions.
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4.4.3 Submodels

The class-based modeling approach using submodels is one of the main contributions

of this thesis. Here, the strengths and limitations of this new machinery are discussed.

One of the main advantages is that model files are now just instantiating a class

rather than defining the whole model. There is a hierarchy of classes, and a modeler can

choose to use only the very basic Model class, for example in the case a model of the

auditory cortex is to be created. At the other extreme, a modeler can use ModelGCAL
to model the primary visual cortex, and only modify a certain method in a subclass.

Alternatively, a modeler can choose to build up on any level of the hierarchy in between

these extremes. Whatever decision is made, the submodels can be easily reused.

The Model class provides a set of helper functions which simplify the workflow

considerably. It is much easier, for example, to define how many sheets and projections

a model should have. The projections between sheets can be easily set up using simple

rules called match conditions, which avoids using nested loops. Also, previously a

subset of dimensions within a model was made possible with conditional statements;

this is now mostly needless, as the helper functions skip parameters which are not set

because the dimension they belong to is not modeled.

The biggest limitation of this approach is that it is mostly restricted to feed-forward

models. Each level in the hierarchy of classes adds more sheets which are to be con-

nected to sheets of lower levels. Therefore, the higher levels in the hierarchy have to

know which sheets in the lower levels exist, and how to connect to them. It would be

desirable that, rather than having a hierarchy of classes, one would have components

which are interchangeable.

This component-based approach would be a major extension to the current imple-

mentation. One of the biggest issues is that attributes are currently shared across the

different levels, and would need to be communicated appropriately across the levels

instead. In addition, it is not clear how feedback connections could be specified.

4.5 Architectural summary

This chapter introduced a set of tools which are necessary in order to build an all maps

model. The input pattern generation was modularized, and the addition of dimensions

was simplified. Each feature coordinator synthesizes exactly one dimension, and ap-

plying them sequentially on a template pattern results in input patterns that cover all
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dimensions modeled in this thesis.

The class-based submodels system is superior to the previous way of defining mod-

els. For a modeler, it is more obvious how sheets and projections between sheets are

created. The code duplication within one file and across files was cut to a minimum.

Submodels can be reused and/or modified depending on the requirement. This makes

differences between related models much more visible than before. It is expected that

new models in Topographica will consistently use this new system.

Multiple projections with increasing delays from LGN sheets to V1 is a novel way

of modeling motion. To the author’s knowledge, it is the first time that this has been

addressed in a publication, although originally proposed in Bednar (2012). The pro-

totype has been extended considerably, and biologically realistic direction maps are

resulting, as shown in 6.5.

In summary, a set of tools necessary to model an all maps model of the primary vi-

sual cortex has been developed. Furthermore, a new way of modeling motion has been

presented. It is expected that the pattern coordinator using the feature coordinators and

the submodels system will be used by the majority of Topographica users in the future.



Chapter 5

Methods

Starting with the basic GCAL model, which was shown to result in biologically realis-

tic orientation maps in section 3.3.2, this chapter demonstrates how this model can be

extended to model all other known cortical maps. First, it is shown which extensions

are needed to model the other cortical maps individually. This includes the changes

in the model structure, as well as the modifications of the input patterns using feature

coordinators. For each model, a graphical representation of the model structure as well

as sample input patterns are printed. Note that all input patterns are created using the

pattern coordinator, which itself makes use of the various feature coordinators (see

section 4.1).

As a sample of how individual models can be combined, a model for color prefer-

ence and ocular dominance is presented. This example has been chosen because this

combination of dimensions was known not to work in Gerasymova (2009). Therefore,

in the corresponding section, the required changes are highlighted.

A combination of the various individual models, resulting in a combined model, is

described at the end of this chapter. This model covers the orientation, ocular dom-

inance, disparity, direction, spatial frequency and color dimensions simultaneously.

Although the complexity of this model is still very high, the model is much simpler

compared to the work in Gerasymova (2009).

5.1 Orientation preference

To model orientation preference, the basic GCAL model as described in section 3.3.2

is used as is. Figure 5.2 shows the Gaussian input patterns which are used. The orienta-

tion of the Gaussians are distributed uniformly random between 0 and π. Alternatively,

47
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natural images can be used (not shown here, see sections 5.6 and 5.7 for reference).

The structure of this model is very simple. The retina sheet outputs its activity to

the LGN sheets, which perform a Difference of Gaussian operation as well as gain-

control, which enables the model to work for a wide range of input contrasts. The V1

sheet is connected to both LGN sheets. Furthermore, short-range lateral excitatory and

long-range lateral inhibitory connections between neurons in V1 exist. The afferent

connections from the LGN sheets, as well as the inhibitory connections, are adapting

using the Hebbian learning rule.

Figure 5.1: Architecture of a GCAL model with neurons selective for orientation. A

Gaussian input pattern is shown on the retina sheet. Blue cones from the LGN sheets

to the retina sheet visualize the receptive field of a single LGN unit. Yellow circles at

the LGN level represent the lateral connections within a LGN sheet due to gain control.

The activity at the LGN level is shown as well. There, one can see that units on the

LGN On sheet are active in regions where the center of the receptive field is brighter

than the surround of the receptive field. For the LGN Off sheet, units are active in

regions where the surround of the receptive field is brighter than the center. Again,

blue circles visualize the receptive fields from V1 to the LGN sheets. Two yellow circles

on the V1 sheet represent the excitatory lateral connection (smaller circle) and the

inhibitory lateral connection (bigger circle). Whiteish areas on the V1 sheet indicate a

slight activation of V1.
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Figure 5.2: Oriented Gaussian input pattern for the basic GCAL model.

5.2 Ocular preference

As ocular dominance expresses the preference for one eye over another eye, a second

retina sheet representing a second eye needs to be added for ocular preference simu-

lations. Therefore, the simulation contains two retina sheets representing the left and

right eye. For each retina sheet, there is one LGN On and one LGN Off sheet. As

before, all LGN sheets connect to V1.

In GCAL (and its predecessor LISSOM), biologically realistic ocular dominance

maps only emerge due to brightness differences in the input. The fraction by which the

pattern brightness varies between the two eyes is set to ε = 0.7. The brightnesses βle f t

and βright of the left and right eyes are then calculated as follows, where ξ is a random

number between 0 and 2 (see a sample pair of input patterns in figure 5.4):

βle f t = (1− ε)+ ε · (2.0−ξ)

βright = (1− ε)+ ε ·ξ

In comparison to previous simulations using LISSOM, additional connections be-

tween the LGN sheets of the two eyes are required. This is due to the gain control at

the LGN level. To recall, gain control allows using a wide variety of input contrasts, by

dividing each units activity by the sum of the activity of surrounding units. Therefore,

a brightness difference is eliminated by gain control, as the ratio of numerator and de-

nominator in equation 3.5 is approximately constant for different brightnesses (as long

as the sum of activations is sufficiently bigger than k).

To circumvent this behavior, lateral connections between the two LGN On sheets

as well as between the two LGN Off sheets are introduced. Then, the denominator in
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equation 3.5 is the same for the units at position j of both sheets (in contrast to adding

up the activations of just one sheet, which results in different denominators each sheet),

but the activation Ψi(t) of the retina sheet is higher for either the left or the right eye,

and therefore the activation η j,O differs between the LGN sheets.

Figure 5.3: Architecture of a GCAL model with neurons selective for orientation and

ocular dominance. Compared to the orientation-only model, a second retina sheet with

corresponding LGN sheets is introduced. The blue lines across the LGN sheets indicate

lateral connections due to gain control of sheets with the same polarity. Please accept

apologies for the small font in this and some of the following figures showing model

architectures.

Figure 5.4: Gaussian input for a GCAL model with neurons selective for orientation and

ocular dominance. One can clearly see the brightness differences of the input patterns.

In this example, the right pattern is much brighter than the left pattern.
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5.3 Disparity preference

For modeling disparity preference, the same model as for the ocular preference simu-

lation is used, but the input differs. Rather than using brightness differences between

the two retina sheets, in the disparity simulation the pattern location is slightly offset

between the eyes, as shown in figure 5.5. The position of the patterns is calculated as

follows, whereas ξ is a uniformly distributed number between 0 and ξmax = 0.08333,

and x is also uniformly distributed between 0 and 0.75−ξmax:

xle f t = x+ξ

xright = x−ξ

Here, it has to be stressed that ocular preference and disparity are two separate

dimensions, although modeled in the same way. A neuron in V1 can prefer one eye

over the other, while keeping the activity level constant regardless of the input pattern

disparity. On the other hand, another neuron might be highly selective for disparity,

only reacting to input patterns with a specific offset, while being selective to input from

both eyes.

Figure 5.5: Oriented Gaussian input pattern with position offset. In this example, the

bottom pattern is clearly offset to the right in the right retina (hitting the x-axis at≈ -0.35

in the left retina, and at≈ -0.2 in the right retina). The pattern at the top is slightly offset

to the left in the right retina.
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5.4 Ocular and disparity preference

When modeling ocular dominance and disparity simultaneously, the input patterns of

the two eyes have to vary in brightness as well as their position offset. This undertak-

ing is straightforward using the pattern coordinator. The model structure itself is not

altered, compared to the individual ocular dominance/disparity simulations.

This simulation is important, as earlier studies have shown that disparity by it-

self cannot explain biologically realistic ocular dominance maps (Miikkulainen et al.,

2005), and it is clear that a disparity map can only emerge if there is an offset between

the pattern locations of the two eyes. Therefore, only if the input pattern show both,

brightness differences and position offsets, ocular dominance maps and disparity maps

become apparent. Figure 5.6 shows a pair of sample inputs where both features are

visible.

Figure 5.6: Oriented Gaussian input pattern with position offset and brightness offset.

The same inputs as in figure 5.5 are shown, but now the pattern on the right retina is

slightly brighter than the pattern on the left retina.

5.5 Direction preference

A new motion model was introduced in section 4.3.2. The model structure compared

to the basic GCAL model consists of the same sheets (a figure of the model structure is

therefore omitted), however multiple delayed projections (here: n = 4) from the LGN

sheets to V1 are introduced. To account for these additional projections, the learning
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rate from neurons in V1 is divided by the number of projections. Furthermore, the

strength for these projections is increased by a factor of 1.5 to push the activity level

of neurons in V1 closer to their desired average activity.

The main contribution in this thesis is the introduction of a feature coordinator

for motion, which moves the input pattern orthogonally to its orientation in the case

of Gaussian patterns, where the orientation ranges between 0 and 2π (in contrast to

0 and π which would only allow upwards/leftwards motion rather than motion in all

directions). For natural images, the direction is chosen randomly between 0 and 2π as

it is hard to determine the orientation of a natural image pattern. At each time step, the

pattern is swept by 3.0/24.0 units.

After n time steps, a new pattern is propagated from the retina sheets to V1. A

sample series of Gaussian patterns for time t = 0 until time t = n (with sweeping of

one pattern from time t = 0 until time t = n−1 and a subsequent onset of a new pattern

at time t = n) with n = 4 is shown in figure 5.7.

Visual inspection has raised the issue that the connection fields of neurons show

unusual behavior at the edges, if run with standard parameters. That is, especially for

the projections which are activated at t = 0 and t = n− 1, neurons at the LGN layer

which are at the very edge of the connection field of neurons in V1 show an unusually

high weight. To circumvent this behavior, the position boundaries of the Gaussian

input patterns are increased. Therefore, the patterns can be “tracked” over time (as in,

they are seen by neurons in V1 from time t = 0 until time t = n− 1). As a rule of

thumb, the boundaries are increased by n−1 times the amount of the pattern is swept

per time step.

Figure 5.7: Oriented Gaussian input pattern moving over time. The leftmost pattern

shows the input at t = 0. Then, at t = 1, the pattern is moved orthogonally to its

orientation slightly further to the top-right. This sweeping continues until t = n− 1. At

t = n = 4, a new pattern with changed orientation is onset. This pattern again is swept

for n time steps, before another pattern serves as an input model input (not shown

here).
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5.6 Spatial frequency preference

Following the proposal in Palmer (2009), multiple LGN sheets selective for different

spatial frequencies in the input are extended to model spatial frequency. Here, there

are υ = 3 different spatial frequency channels with different sizes of receptive fields in

the photoreceptor sheet. The receptive fields for successive spatial frequency channels

increase by a factor of Γ = 2.5. Both, υ and Γ are represented as variables in the source

code and can easily be changed. However, more than υ = 4 spatial frequency channels

are computationally not feasible.

Similarly to the ocularity simulation, additional lateral connections between the

spatial frequencies are added. This allows the different spatial frequency channels to

“compete” with each other. A more detailed investigation of this principle would be

desirable, but is left for future work.

Figure 5.8 shows the extended model, which also displays the different activity

values of the spatial frequency channels depending on the present frequencies in the

Figure 5.8: Architecture of a GCAL model with neurons selective for orientation and

spatial frequency. Compared to the orientation-only model, a second and third spatial

frequency channel with each one LGN On and one LGN Off sheet is introduced. Blue

cones between the spatial frequency channels show connections due to gain control.

The size of these connections has to be investigated further, as discussed in section

7.2.
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input image.

As input patterns, (gray-scale) natural image patches from the McGill dataset (Ol-

mos and Kingdom, 2004) shown in figure 5.10 are used. This has the advantage over

Gaussian input patterns in that different spatial frequencies are inherent to natural im-

ages, whereas they would need to be synthesized for Gaussian patterns. This is still

work in progress, see section 7.2.4 for further discussion.

5.7 Color preference

In comparison to Bednar et al. (2005), a new color model by Ball (2014) (improved

and updated to work with the most recent version of Topographica by Spigler (2014))

is used. Separate retina sheets for each color are replaced by a single retina sheet, with

the possibility to access different color channels. This further reduces the number of

retina sheets, as now just like in biology just one sheet per eye is needed. Each color

channel within the retina can be seen as one type of cone cells.

Following the opponent-process theory (Hurvich and Jameson, 1957), four pairs of

sheets at the LGN level modeling the following opponent channels are present: red-

green, green-red, blue-yellow and black-white (also known as luminance). For the

red-green pair, the center of the receptive field is connected to the red channel and

the surround is connected to the green channel. For the green-red pair, the center and

surround are inter-converted. The blue-yellow pair is a special case, as it is modeled

spatially co-extensive as proposed in Dacey (2000). Therefore, the receptive fields in

the center from the blue channel and the surround which is connected to the red and

green channels are equally wide. The luminosity pair receives input from all color

channels, in the center as well as the surround. The LGN On sheets receive excitation

in the center and inhibition in the surround and vice versa for the LGN Off sheets. A

visualization can be found in figure 5.11.

The model was built in a way that also a dichromatic simulation is feasible, how-

ever this is not shown here. In contrast to the ocular dominance and spatial fre-

quency simulations, gain control is not used for color selective channels (red-green,

green-red and blue-yellow) due to the lack of gain control in the color sensitive parvo

cells (Solomon and Lennie, 2005; Pitkow and Meister, 2012). Therefore, gain control

is only used for the luminosity sheets.

As for the spatial frequency simulation, natural images from the McGill dataset

are used as input patterns (see figure 5.10). The ratio between strengths of LGN color
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versus luminosity channel connections to V1 has been chosen as 0.1, i.e. the strength of

the connections from luminosity sheets to V1 is much higher compared to the strength

of color connections.

Figure 5.9: Architecture of a GCAL model with neurons selective for orientation and

color. Compared to the orientation-only model, color-selective LGN sheets are intro-

duced. Here, “RedGreenBlue” stands for luminosity, as the luminosity channel gets

input from all three cone types, here modeled within a single retina. “RedGreen” sheets

are wired internally to get their center input from the red cones, and surround input

from the green cones. For the “GreenRed” sheets, this is interchanged. The “BlueRed-

Green” sheets get their center input from the blue cones, and their surround input from

both, red and green cones. These sheets are modeled spatially co-extensive, i.e. the

receptive fields of center and surround are of equal size. Please accept apologies that

the pattern on the retina sheet is drawn in gray-scale rather than color.

5.8 Color and ocular preference

In comparison to the color preference simulation above, a second eye with exactly

the same setup as the first eye is introduced. This then also requires four more pairs of
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Figure 5.10: Example natural image input pattern

Figure 5.11: Visualization of receptive fields in color simulations. Here, Long (L) stands

for the red cone type, Medium (M) for the green cone type and Short (S) for the blue

cone type. Long/Medium/Short are labels according to the wavelengths the cones are

responsive to. Figure reprinted from Paula (2007).

opponent channels at the LGN level for the second eye. Otherwise, the model structure

is the same, as can be seen by comparing figures 5.9 and 5.12.

In comparison to the previous all maps model (see 3.3.3), the input patterns be-

tween the eyes actually differ in their brightness/value in the HSV color space rather

than subtracting the same constant from the R, G, B values which results in a changed
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hue value.

The implementation is as follows: each pixel i is read from the image file, resulting

in the RGB values ri, gi, bi. Then, these values are converted into the HSV color space,

resulting in values hi, si and vi. As for the pure ocular dominance simulation, a variable

ε = 0.7 is introduced describing the brightness difference between the eyes. Here, the

random variable ξ takes values between (−1+ε)/2.0 and (1−ε)/2.0. Then, the HSV

values for the left and right eye are calculated as follows:

hi,le f t = hi,right = hi

si,le f t = si,right = si

vi,le f t = vi +ξ

vi,right = vi−ξ

Converting these HSV values back to RGB leads to image pairs where one of the

patterns has a higher brightness than the other, while still having the same hue for each

pixel. Note that in some cases a cropping is necessary, where the values vi,le f t and

vi,right above 1.0 are cropped to 1.0. A sample image pair is shown in figure 5.13.

Figure 5.12: Architecture of a GCAL model with neurons selective for orientation, oc-

ular dominance and color. Compared to the color model, a second retina sheet and

corresponding LGN sheets are introduced. Furthermore, lateral connections between

the luminosity sheets are added.

5.9 Combined model

Here, it is shown how the individual models presented above are combined to build a

unified model with neurons selective for the following feature dimensions: positional
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Figure 5.13: Example of natural image patterns in the case of a two-retina simulation.

There, one can see clear brightness differences between the left and right input images.

However, the corresponding hue values in the two images are the same.

preference, orientation, eye of origin, phase disparity, direction, color and spatial fre-

quency. In order to build a unified model, the concepts of all individual models have to

be combined. Furthermore, the input patterns which are presented to the model have

to cover all input dimensions so that feature preferences of neurons in V1 emerge.

The basic GCAL model with one retina sheet, one pair of sheets at the LGN level

and one sheet representing V1 is extended as follows: To model color, the one pair of

LGN On/Off sheets is replaced by four opponent channels as described in section 5.7.

Extending this model to also include spatial frequency is possible by introducing υ−
1 = 2 spatial frequency sheets, as the first spatial frequency channel is implied by the

luminosity sheets. As the input, colored natural images are used, which do not need

any adjustments at this stage as color and spatial frequency are both inherent.

By mirroring this pathway, i.e. introducing a second retina sheet and building

the same structure of LGN sheets for this sheet, the ocular dominance and disparity

dimensions are covered. Unfortunately, there is no color calibrated stereo dataset, and

therefore disparity has to be synthesized as described in section 5.3. Also, brightness

differences are introduced (see section 5.2).

Introducing temporal delays from every single LGN sheet to V1 results in a prefer-

ence for motion. As in section 5.5, n = 4 projections per sheet with increasing delays

are used. The motion of the image patches is synthesized.

Figure 5.14 is visualizing the architecture of the all maps model. In total, there are
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27 sheets, two of them on the retina level, 24 LGN sheets and the V1 sheet. These

are connected by in total 158 projections, thereof 60 from the retina sheets to the LGN

sheets (including one projections per cone per color selective sheet), 72 gain control

connections at the LGN level, 26 connections from the LGN sheets to V1, as well as

the two lateral projections within V1. The input for the combined model for both retina

sheets at different times is shown in figure 5.15.

5.10 Summary

Starting with the basic GCAL model, this chapter first introduced the required changes

to this model to cover the other feature dimensions individually. Changes made are the

extension of the model by more sheets, the extension by more projections, as well as

the alteration of the input patterns to cover the required features, and in most of the

cases, a combination of these.

Then, the ocular dominance and color model have been merged to show the com-

bination of two previously separate models. In this particular case, the four opponent

channels were duplicated, whereas the duplication is wired to the second retina sheet

introduced by the ocularity model. One could also think of it the other way around.

Starting with the ocularity model, the previously two pairs of LGN sheets were re-

placed by four opponent channels. This clarifies that there is no “order” of dimensions,

and any subset of dimensions can be modeled.

At the end of the chapter, a unified model resulting in selectivity for all known spa-

tial dimensions in the primary visual cortex was presented. This is still a very complex

model, however following the proposals in Bednar (2012) is much more comprehensi-

ble than the previous attempt to build an all maps model in Gerasymova (2009).

In the next chapter, the resulting maps of these models are shown and discussed.
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Figure 5.15: Example natural image patterns for the combined model. The brightness

of the pattern varies between the eyes. Furthermore, in this example the pattern is

slightly offset to the right in the right retina. Also, the pattern is swept over time, here in

south-east direction.



Chapter 6

Results

In the previous chapter, a variety of models accounting for different cortical maps were

introduced. Here, the resulting maps are investigated, and for the models combining

feature preferences the interplay between the maps is discussed. They are also com-

pared to the maps found in animals, as reviewed in chapter 2.

For each model, the orientation map after 20000 training iterations is shown, in-

cluding an indication of pinwheels which were found. Furthermore, the Fourier power

spectrum is shown, which visualizes how frequently orientation patches repeat. Bio-

logical maps usually have ring-shaped Fourier spectra (Blasdel, 1992a,b). The integral

of the power spectrum over the radius is shown in the bottom-right corner of these

plots. A red line indicates the estimated radius of the isotropic ring (Stevens et al.,

2013).

The maps are measured by presenting sine gratings with varying features to the

retina. For example, to measure orientation, sine gratings with varying orientation,

phase and position are used. The phase and position parameters have to be varied so

that at least one appropriate pattern has been presented for each neuron. The orienta-

tion preference is then calculated by forming a vector for each measured orientation,

whereas the vector angle corresponds to the measured orientation and the vector length

corresponds to the highest activity of this neuron for this orientation. Then, the sum of

these vectors is calculated, which again results in a vector. The angle of this vector is

the resulting orientation preference.

Furthermore, the length of the resulting vector corresponds to the selectivity of

neurons, which reveals the ratio of the responses to the preferred vs non-preferred ori-

entation. A highly selective neuron responds much stronger to the preferred orientation

than to others. For weakly selective neurons, the difference of the activity values for

63
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preferred vs non-preferred orientations is smaller.

Here, a series of separate maps is measured. For example, the direction preference

is measured independently of the color preference, and so forth. In case of all but the

phase disparity map, the corresponding feature as well as the orientation of the sine

grating is varied. For the phase disparity map, the orientation of the sine grating is

vertical to measure horizontal disparity. It would be desirable to measure maps as a

cross product of all features, however this would be very expensive in terms of the time

needed.

6.1 Orientation preference

In this section, the resulting orientation map of the basic GCAL model is briefly dis-

cussed. For the interested reader, an extensive evaluation of this model can be found

in Stevens et al. (2013).

The orientation preference of the orientation map in figure 6.1 varies smoothly

across the cortex. As in animals, typical characteristics such as pinwheels, saddles and

fractures can be observed. The results are qualitatively the same as in the published

GCAL model (Stevens et al., 2013), and an exact replicate can be created if desired

(not shown here).

(a) Orientation preference map with overlaid pin-

wheels. The histogram to the right shows how the ori-

entation preference is distributed, here all orientations

are represented nearly uniformly.

(b) Fourier power spectrum of the

orientation map, which is ring-

shaped and therefore indicating a

high quality map.

Figure 6.1: Orientation map for the basic GCAL model
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6.2 Ocular preference

Introducing a second retina and presenting patterns which vary in brightness between

the retina results in ocularity maps as shown in figures 6.2 and 6.3. The orientation

map is slightly altered, but still of a high quality comparable to those of animals.

The majority of neurons are selective for one eye or the other, and there are only

relatively few binocular neurons. As in animals, most neurons lie in the center of

ocular dominance stripes. Some pinwheel neurons are duplicated, i.e. there are several

neurons with low orientation selectivity, surrounded by other neurons of all different

orientation preferences, very close to each other. These duplications occur almost

always near ocular dominance boundaries, which are featured by a low selectivity

for ocularity. Therefore, these neurons have a low selectivity for both: orientation and

ocular dominance. It would be interesting to investigate the properties of these neurons

further.

(a) Orientation preference map with overlaid pinwheels

and contours visualizing the ocular dominance bound-

aries. The ocular dominance boundaries tend to cross

iso-orientation patches orthogonally, as found in ani-

mals. However, some other boundaries seem to fol-

low fractures. Some pinwheels are duplicated, and

these interestingly lie at ocular dominance boundaries.

Therefore, these pinwheel neurons not only have a

weak selectivity for orientation, but also a weak selec-

tivity for ocular dominance.

(b) Fourier power spectrum of the

orientation map. The spectrum is

still ring-shaped, however when in-

specting the histogram one can see

that there is a second peak at the

left, indicating that there are some

pinwheels which are very close to-

gether. Therefore, the quality of the

orientation map slightly decreased

compared to the orientation-only

simulation.

Figure 6.2: Orientation map with overlaid ocular dominance boundaries
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(a) Ocular preference map. One can see two

peaks, one at very low values and another

one at very high values. This indicates that

most neurons have a preference for one eye

or the other.

(b) Ocular selectivity map. When com-

paring with the ocular preference map, it

emerges that neurons which are weakly se-

lective (dark areas) do not have a preference

for input from a certain eye.

Figure 6.3: Ocular dominance preference and selectivity

Figure 6.4: Ocular preference map of a LISSOM model for comparison. See also figure

2.3 for an ocular preference of a macaque monkey. Figure reprinted from Miikkulainen

et al. (2005)
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6.3 Disparity preference

A model driven by input patterns which have a position offset between the eyes does

not lead to realistic ocular preference maps, as shown in figure 6.5. The ocular domi-

nance boundaries are very irregular. The same figure shows that the orientation map is

altered considerably. Iso-orientation areas are stripy rather than patchy, which results

in a non ring-shaped power spectrum.

The disparity map itself indicates that most neurons are not selective for disparity.

There are small areas of highly selective neurons, and it seems that there is a clear

organization of disparity preference in these areas, just like in animals. That most

neurons are not selective for disparity could explain the relatively few experimental

findings about disparity maps in animals.

(a) Orientation preference map with overlaid pin-

wheels and contours visualizing the ocular dominance

boundaries. The ocular dominance boundaries

are very irregular, originating from the low ocular

selectivity as printed in figure 6.6. Iso-orientation

patches tend to run vertically.

(b) Fourier power spectrum of the

orientation map. The spectrum in-

dicates that iso-orientation patches

run vertically. Usually, a ring-

shaped spectrum elucidates that

from any one point, the same ori-

entation preference on average will

occur again at a distance regard-

less of the direction.

Figure 6.5: Orientation map with overlaid ocular dominance boundaries for a disparity

simulation
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(a) Disparity preference and selectivity map.

Most neurons are not selective for disparity,

and it seems there is a clear organization of

neurons within areas which are selective for

disparity.

(b) Ocular selectivity map. Compared to

the simulation with brightness differences, it

emerges that most neurons are not selective

for ocularity. This leads to irregular ocular

dominance boundaries, as these are origi-

nating mostly from noise rather than actual

ocular preferences.

Figure 6.6: Disparity preference and selectivity + ocular selectivity for a disparity simu-

lation

6.4 Ocular and disparity preference

For this simulation, Gaussian patterns with brightness differences as well as position

offsets between the eyes were used as training inputs. As for the ocular-only simula-

tion, biologically realistic orientation maps and ocular dominance maps emerge. The

ocular dominance boundaries tend to cross orientation patches at a right angle. Again,

some duplicate pinwheels near ocular dominance boundaries are present. The dispar-

ity map looks qualitatively very similar to the one in the disparity-only simulation.

The histogram records a clear preference for disparities around 180 degrees, which is

reasonable as the position offset is always on the horizontal axis.
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(a) Orientation preference map with overlaid pinwheels

and contours visualizing the ocular dominance bound-

aries. Qualitatively, this map looks very similar to the

ocularity-only simulation (see figure 6.2), except that

there are now more ocular dominance boundaries that

follow orientation borders. Please also see this fig-

ure for discussion. Compared to figure 6.5, the ocular

dominance boundaries are of regular shape.

(b) Fourier power spectrum of the

orientation map. Compared to the

spectrum of the disparity-only sim-

ulation, the spectrum is clearly ring-

shaped, indicating a higher qual-

ity orientation map, similar to those

found in animals.

Figure 6.7: Orientation map with overlaid ocular dominance boundaries for a brightness

difference+disparity simulation

(a) Disparity preference and selectivity map.

As in the disparity-only simulation, most neu-

rons are not selective for disparity. Here, one

area with especially high disparity selectivity

is obvious.

(b) Ocular selectivity map. Most neurons are

highly selective for one eye. This again il-

lustrates that brightness differences are driv-

ing the development of ocularity maps, rather

than disparity in the input.

Figure 6.8: Disparity preference and selectivity + ocular selectivity for a disparity simu-

lation
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6.5 Direction preference

This section presents the resulting maps of the model in which temporal delays from

the LGN sheets to V1 are introduced. As discussed in 5.5, these are especially of

interest as this is a novel way of modeling motion selectiveness.

Figure 6.9 shows the resulting orientation map. Compared to the basic GCAL

model, the map quality decreased, as there are several areas with a cumulation of

nearby pinwheel neurons. The two dark points in the center of the Fourier plot make

also reveal the same fact, and there is no clear peak in the Fourier histogram.

The produced direction map is shown in figure 6.12. There, one can see that most

neurons are selective for the direction orthogonal to their orientation preference. Fur-

thermore, there are areas where two direction patches are included in one orientation

patch. The connection fields of a highly selective neuron are shown in figure 6.10.

(a) Orientation preference map with overlaid pin-

wheels. One can observe areas with a cumulation of

nearby pinwheel neurons, which are a sign of lower

map quality.

(b) Fourier power spectrum of the

orientation map. The two cen-

tral dark points again indicate an

accumulation of nearby pinwheels.

However, there is still an isotropic

ring visible.

Figure 6.9: Orientation map for the motion simulation
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(a) Connection fields of the projections

from the LGN Off sheet to V1

(b) Corresponding connection fields of the

LGN On sheet to V1

Figure 6.10: Example connection fields of an direction selective neuron. The leftmost

projections are for time lag 0, and the time lag is increasing to the right. Here, the

neuron is selective for a pattern which is in the bottom left of the connection field at time

t = 0, and then moving upwards and slightly to the right. Please mind that the majority

of neurons does not have such a clear indication of direction preference.

Figure 6.11: Direction preference map. Brighter areas show higher selectiveness for

direction. The direction map looks similar to an orientation map, however with smaller

patches. This is because orientation is the larger scale organization in this simulation.

By increasing the speed of the input patterns, it is theoretically possible that direction

becomes the large scale organization (Miikkulainen et al., 2005), however this is con-

tradicting the experimental findings and not shown here.
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Figure 6.12: Orientation map overlaid with arrows showing the preferred direction.

Darker arrows correspond to higher selectivity and vice versa. The color key for orienta-

tion preference at the bottom of the figure allows better investigation of the orthogonality

between orientation and direction maps. As in animals, some orientation patches con-

tain two direction patches of opposite direction preference. This overlaid map looks

similar to an overlaid map in a LISSOM simulation with multiple lagged LGN sheets

(figure 5.23 in Miikkulainen et al. (2005)).
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6.6 Color preference

The resulting maps of a model using the new color model with a single retina sheet are

presented here. Compared to the color map in Bednar et al. (2005), color is the largest

scale organization, resulting in preferences of a certain color for nearly all neurons

rather than clearly separate color blobs. In the previous model, color selective neurons

had only a weak orientation selectivity. Here, all neurons are approximately equally

orientation selective (see figure 6.14).

Please accept apologies that in this simulation there is a clear peak for reddish/yel-

lowish colors, this is due to the weighting of the cone types. The color+ocular domi-

nance preference shows a simulation with a better weighting, resulting in a wider range

of color preferences.

(a) Orientation preference map with overlaid pin-

wheels. Compared to the basic GCAL model, the ori-

entation map is slightly distorted, but still of a high

quality.

(b) Fourier power spectrum of the

orientation map, for comparison

with the basic GCAL model.

Figure 6.13: Orientation map for the color simulation
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(a) Overlaid preference+selectivity map for

orientation. Brighter areas correspond to

higher selectiveness. In comparison to pre-

vious models, all neurons are approximately

equally selective for orientation, i.e. there are

no weakly selective areas for orientation due

to highly color selective blobs.

(b) Overlaid preference+selectivity map for

color. It emerges that all neurons are se-

lective for color, and it seems that color is

the largest-scale map organization. This is

in contrast to earlier studies, where only rela-

tively few neurons were color selective orga-

nized in color blobs.

Figure 6.14: Overlaid preference+selectivity maps for orientation and color in a color

simulation

6.7 Color and ocular preference

Here, the resulting maps of a combined model for color and ocular preference are

presented. These are an important milestone, as the previous implementation in Topo-

graphica based on LISSOM did not produce realistic maps for this feature combination,

as discussed in section 5.8.

The orientation map is not altered considerably compared to the individual models.

The ring shaped Fourier spectrum indicates a high quality orientation map (not shown

here).

As for the color only model, the color map is the largest scale organization. Here,

there is a wider range of color preference, due to a different weighting of the cone

types. Also, the color map in figure 6.15 looks “sharper” which is due to a higher den-

sity of neurons compared to the color-only simulation. Again, please accept apologies

for this.

The ocular dominance boundaries look more patchy compared to the stripy bound-

aries in the individual ocular dominance model. This might be due to the interplay of

the ocular dominance and color map. As in animals, most pinwheels lie in the center

of ocular dominance patches.
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(a) Orientation preference map with overlaid

pinwheels and contours visualizing the oc-

ular dominance boundaries. As in the in-

dividual ocular dominance simulation, ocu-

lar dominance boundaries tend to cross iso-

orientation patches orthogonally, but not all

of them. Again, some pinwheels are du-

plicated, however in this simulation not at

the ocular dominance boundaries. The oc-

ular dominance boundaries are more patchy

compared to the stripy boundaries in the in-

dividual simulation.

(b) Overlaid color preference+selectivity

map. Compared to the color-only simulation,

a wider range of colors is covered (see

histograms). Also, the map looks “sharper”

which is due to a higher cortical density in

this simulation.

Figure 6.15: Orientation and color maps with overlaid ocular dominance boundaries for

a color+ocular dominance simulation

6.8 Spatial frequency preference

Extending the basic GCAL model with spatial frequency channels allows neurons in

V1 to become selective for various spatial frequencies. As with most of the other

presented features, the orientation map in figure 6.16 is slightly distorted. The spatial

frequency map in figure 6.17 reveals that neurons become selective for a range of

different spatial frequencies. In this simulation, the range is quite small, however if a

fourth spatial frequency sheet is added, the range for which neurons become selective

gets wider. The connection fields of neurons in V1 show that almost all neurons have

higher weights for the spatial frequency channel selective for high frequencies in the

input compared to the other spatial frequency channels selective for lower frequencies

in the input. This is contrary to the previous implementation in LISSOM (Palmer,

2009), where some neurons became selective for the one channel while other neurons
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(a) Orientation preference map with overlaid pin-

wheels. The orientation map is slightly distorted, with

some duplicated pinwheels. As with the other cortical

maps where this occurs, this might be due to the inter-

play of the maps.

(b) Fourier power spectrum of the

orientation map. The isotropic ring

is clearly visible, however some pix-

els within the ring indicate distor-

tions.

Figure 6.16: Orientation map for the spatial frequency simulation

became selective for others.

6.9 Combined model

Running the combined model is a difficult undertaking, as there are dozens of parame-

ters which can be varied, and the computational resources required are enormous. On

a 24 core Intel Xeon X5650 with 24 gigabyte RAM, simulating the combined model

for 15000 training iterations and subsequent map measurement takes approximately

20 hours. At the time of writing, no parameter set was found which allowed the mea-

surement of maps. This is likely due to activation values which are on average either

too high or too low. Then, the neurons in V1 do not organize into maps, and the mea-

surement of map fails. Possible ways to resolve this issue are discussed in the next

chapter.
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(a) Overlaid preference+selectivity map

for spatial frequency. One can see that

the preference in spatial frequency varies,

however the histogram shows that the range

is quite narrow.

(b) Spatial frequency selectivity map. Most

neurons are somewhat selective for spa-

tial frequency. Some smaller areas appear

with a high spatial frequency selectiveness,

whereas these prefer very high or very low

spatial frequencies (see overlaid map on the

left).

(c) Overlaid preference+selectivity map for spatial frequency for a simulation with four spatial

frequency channels. In comparison to the simulation with three channels (see figure above),

a wider range of spatial frequencies is covered. Accept apologies that the colors do not match

between the two figures, instead please compare the histograms so that the differences

become visible.

Figure 6.17: Spatial frequency map





Chapter 7

Discussion and Future Work

Building an all maps model of the primary visual cortex is a difficult undertaking.

There are many scientific decisions which need to be made, for example, which sheets

to connect laterally for gain control. Furthermore, there are many parameters which

influence the resulting maps. Here, a discussion of the results of the previous chapter

is presented. Then, future research ideas are given. The chapter ends with suggestions

for improvements of Topographica, which would allow further investigation of the

complex interplay of several maps.

7.1 Discussion of the results

In this section, the results of the individual simulations are discussed further. Starting

with the basic GCAL model which can account for orientation preference, the other

cortical maps which emerge in individual models are investigated. Then, suggestions to

resolve the issue of not being able to measure maps in the all maps model are presented.

7.1.1 Orientation preference

In the simulation with the basic GCAL model, the high quality orientation maps could

be reproduced qualitatively. In fact, an exact replicate of the published GCAL model (Stevens

et al., 2013) can be created if desired. This is important seeing that the new class-based

way of defining the model is used. Although considerably simplifying the model def-

inition and exploration, the instantiated models still have the same properties as with

the traditional way of defining models.

79
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7.1.2 Ocular dominance preference

When adding a second retina sheet to the simulation, and changing the input patterns

so they vary in their brightness between the retinas, biologically realistic ocular dom-

inance maps emerge. Pinwheels are usually found in the center of ocular dominance

stripes. Some duplicated pinwheels, which indicate small areas of low orientation

selectiveness, occur near ocular dominance boundaries. The resulting maps are com-

parable to those in Miikkulainen et al. (2005).

7.1.3 Disparity preference

As found in previous studies, position offsets cannot account for ocular dominance

stripes in simulations using LISSOM/GCAL (Miikkulainen et al., 2005). All neurons

are binocular, i.e. not preferring input from one eye over the other. The disparity map

shows small areas of high disparity selectiveness, which could explain why so far no

large-scale disparity map was measured in animals (Kara and Boyd, 2009).

7.1.4 Ocular and disparity preference

Using inputs which have varying brightness and a position offset between eyes, biolog-

ically realistic ocular dominance and disparity maps emerge. The ocular dominance

stripes tend to cross iso-orientation patches orthogonally. In this simulation, there is a

clear peak for disparities around 180 degrees, which reflects the input statistics because

the position offset of the patterns is in x direction.

7.1.5 Direction preference

The direction map emerging of the new motion model with multiple time delayed

projections from the LGN sheets to V1 shows biologically realistic features. As in

animals, most neurons are selective for the direction orthogonal to their orientation

preference. Also, one iso-orientation patch often includes two smaller iso-direction

patches with opposite preference for direction. This demonstrates that multiple lagged

projections from the LGN level to V1 can account for biologically realistic direction

maps. Future work could investigate which parameters could improve the orientation

map quality. Here, the learning rate of the afferent connections to neurons in V1 was

decreased, as there are more incoming connections. One could also argue that the



7.1. Discussion of the results 81

strength of these afferent connection should be decreased because of the same argu-

ment.

7.1.6 Color preference

The parameters of the color model in use need further investigation. Previous models

have shown a clear separation of color blobs and orientation selective regions. With

the new color model, there are no separate areas anymore. Even if the ratio of the input

of color channels and luminosity channels to V1 is decreased, color is still the largest

scale organization. Increasing the strength of the luminosity channel leads to less color

selective neurons at an equally large scale. This might be due to the homeostasis

process in V1 of GCAL (Ball, 2014).

7.1.7 Color and ocular dominance preference

The combination of the ocular dominance model with the color model is one of the

many combinations one can model. It was shown that brightness differences intro-

duced to natural images by converting them into HSV space and changing the value of

pixels result in similar results to the individual models. Furthermore, a better choice

of the cone scaling led to a hue map which shows a wider range of color preferences.

This points out how small changes in the parameter space can have a quite considerable

effect on the resulting maps.

7.1.8 Spatial frequency preference

The spatial frequency simulation has shown that neurons become selective for a range

of spatial frequencies. However, compared to the previous work in Palmer (2009), the

range is much smaller. This is due to the selectiveness of all neurons for one out of the

three spatial frequency channels. The existing variety in frequency preferences emerge

only because of a slightly higher weight to the other two spatial frequency channels of

some neurons.

7.1.9 Combined model

The combined model covering all known spatial maps has dozens of parameters to

control. Some of them are related to the input pattern generation, such as the speed



82 Chapter 7. Discussion and Future Work

for the sweeping of patterns or the weight of the individual color channels. Other pa-

rameters can control the architecture of the model, for example the amount of spatial

frequency channels or how many projections with temporal delays should be present

for modeling motion. Yet others are controlling the strengths and weights for the pro-

jections between the sheets. It is expected that tweaking these parameters is necessary

so that the all maps model results in useful maps.

In the trials to run the all maps model, it was not possible to generate any maps

at all. This is likely due to an on average too high or too low activation of neurons

in V1, which then in turn do not respond appropriately to the measurement patterns.

Therefore, a parameter search over different strengths from the retina sheets to the

LGN sheets, as well as for the strengths from the LGN sheets to V1, is recommended.

The two parameters should be changed independently of each other.

It is expected that once a suitable parameter set is found, the all maps model will

result in maps for all feature dimensions. However, in this project a parameter search

was not possible due to the high computational resources which are needed; one sim-

ulation with 15000 training iterations takes about 20 hours on a fairly fast machine. It

appears that using a cluster is unavoidable to run multiple simulations.

The resulting maps are likely to be distorted compared to the individual models, as

a high degree of interdependence is expected. However, such maps will reveal open

issues with the GCAL model, and in turn can provide hints where improvements might

be necessary.

7.1.10 Summary

The resulting maps of the individual models have shown for the first time that GCAL

can account for all known cortical maps in separate simulations. Previously, this was

shown for LISSOM, the predecessor of GCAL. Building an all maps model is still

an open issue, which is complex because of the interplay of all the different features

and their corresponding model properties as well as the vast number of parameters.

Compared to the previous LISSOM all maps model, it was shown that the combination

of color maps and ocular dominance maps can be successfully established.
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7.2 Future work scientifically

In this section, a variety of possible future research topics is presented. These are only

a small subset of the many topics that can still be investigated using computational

models of the visual cortex, with a focus on topics which require nearly all/all maps to

be simulated simultaneously.

7.2.1 Interdependence of maps

A combined model of all known cortical maps allows the examination of various previ-

ous proposals. The investigation of the interdependence of various feature maps could

be driven further by creating more models with various feature combinations. The

ocular dominance+color model is a step in the right direction, but the full product of

all feature combinations should be simulated, to see in detail which dimension affects

which other dimension. The proposal of a very clear and significant interdependence

of maps in Yu et al. (2005) could be validated using this technique.

7.2.2 Uniform coverage

One research goal is to understand the functionality of cortical maps. It has been sug-

gested that cortical maps might be optimized for completeness and continuity, which

are competing principles (see section 3.4). An investigation of completeness and con-

tinuity of an all maps model is desirable, and could give an answer to the controversial

question whether cortical maps are optimized for uniform coverage.

7.2.3 Relative order of map development

Also, by varying inputs within a single simulation, one could test whether the relative

order of map development corresponds to different map properties, as suggested in

Goodhill and Cimponeriu (2000). As a starting point, two models of the same structure

as for an ocular dominance simulation could be created. Then, in one of the models

the first 10000 simulations are run with patterns of equal brightness but varying orien-

tation. After 10000 iterations, brightness differences are supplemented. In this model,

the orientation map develops before the ocular dominance map. For the second model,

this procedure could be reverted, by showing Gaussians of only one orientation but

varying brightness in the first 10000 iterations.
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7.2.4 Gaussian stimuli for color and spatial frequency

For the color model, it would be desirable to be able to use colorized Gaussian inputs.

These could be controlled in detail by the modeler, which is not the case at all for

natural images. So far, there has been no way found to imitate the complex relationship

between foreground and background found in natural images. In natural images, hue

usually changes slowly, and often brightness changes without changes in the hue value.

A starting point could be a Gaussian pattern of a random hue, set on a background of

the same hue, but different brightness. However, a tentative draft of such a pattern did

not lead to a meaningful color map so far.

Similarly, randomly varying the size of Gaussian patterns to simulate varying spa-

tial frequency (as described in section 4.1) did not lead to a meaningful spatial fre-

quency map. Compared to colorized Gaussian inputs, resolving this issue should not

be as hard.

7.2.5 Lateral connections between spatial frequency channels

Also related to models including spatial frequency are the extents of the lateral connec-

tion between spatial frequency channels. Usually, the extent of the lateral connection

is (approximately) as large as the receptive field of a neuron in the corresponding LGN

sheet. However, the sizes of the receptive fields depends on the spatial frequency chan-

nel. Therefore, when connecting sheets across spatial frequency channels, it is not clear

whether the size of the lateral connection should be as large as the receptive field of the

incoming sheet, or the outgoing sheet. One could also imagine some ratio of incoming

to outgoing channel. Each extend is expected to lead to different characteristics, which

need to be discovered in future research.

7.3 Future work for Topographica

Topographica is a powerful simulator for computational modeling neural maps, and

includes many helpful and advanced functions. However, there are still some open

issues, especially when multiple maps are investigated. Here, some suggestions for

future functions which would improve Topographica are presented.
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7.3.1 Improved visualization

From a software point of view, the extension of the library “dataviews” which is used

by Topographica to be able to overlay different cortical maps is desirable for better vi-

sualization of the interplay of maps. Thus far, it is only possible to overlay boundaries

and points on a map, as done when overlaying the ocular dominance boundaries on the

orientation map, and additionally inserting points indicating pinwheel neurons. One

could imagine arrows as in the orientation map overlaid by direction arrows, which

was done manually for this thesis. The length could not only have varying brightness

to visualize selectiveness, but also varying length. This would allow more dimensions

to be visualized within a single graphic.

The same library could also be extended in a way that the angles of crossings

between the maps could be easily calculated. This would allow comparison to other

models and experiments with animals where this property is often stated. This is more

reliable than a visual inspection, and one could use them as statistical measurement to

investigate the interdependence of maps.

7.3.2 Stereo camera input streams

The investigation of models which are created using a stereo camera as the input source

is another interesting research idea. A stereo camera could provide input similar to

those of natural images, but successive images could potentially account for motion.

The input could be used directly, but possibly one wishes to introduce brightness dif-

ferences so a model with realistic ocular dominance maps could emerge.

7.3.3 Component based submodels

Another important improvement would be changing the class-based submodels sys-

tem to be component based rather than inheritance based, as discussed in section 4.4.

This will be necessary to build models which include higher visual areas and feedback

connections between the cortical areas.





Chapter 8

Conclusions

Neurons in the primary visual cortex of mammals show preferences for a variety of

features, such as orientation and ocular dominance. These preferences can be visu-

alized in cortical maps, where a regular organization of the neurons becomes visible.

For example, nearby neurons in V1 have preferences for similar orientations. There

is evidence that the map structure depends on the input characteristics, and therefore

each feature results in a distinct map.

It is thought that cortical maps emerge due to the fact that a high dimensional input

space is mapped on a two dimensional set of neurons. Then, an interdependence of

all feature preferences seems unavoidable. One highly controversial suggestion is that

cortical maps are organized for uniform coverage, i.e. there is a trade-off between

continuity and completeness (Swindale et al., 2000).

In general, the function of cortical maps is still an open subject. It was found that

there is no orientation map in rats, although neurons were found to be highly selective

for orientation (Ohki et al., 2005). Also, it is unclear whether there are cortical maps

in higher visual areas, where the presentation of more complex visual inputs is needed

in order to get reliable responses of neurons.

In this thesis, three families of models resulting in biologically realistic cortical

maps have been reviewed. Nearly all of them model only a limited, small subset of

features, with the exception of Gerasymova (2009), where the predecessor of GCAL

was used to implement an all maps model. However, the combination of color and

ocular dominance was known not to work, and the resulting spatial frequency map was

not of a high quality either. More importantly, the model by Gerasymova (2009) is

highly inflexible and difficult to use.

In this thesis, a superior way of defining models was presented, where it is more

87
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obvious how large amounts of sheets and projections can be defined, especially for

complex models such as the combined all maps model. Rather than manually connect-

ing sheets with deeply nested loops, match conditions were introduced allowing the

fully automatic wiring up of sheets. Furthermore, the inspection of model properties

was improved significantly, and is now possible before the (time and memory con-

suming) model instantiation. At the time of writing, several other users had already

migrated to this new system, illustrating a considerable improvement in the software

design.

The basic GCAL model with neurons selective for orientation was rebuilt using the

novel way of defining models. Then, a series of models with feature preferences for

orientation and one of the other input dimensions was presented. There, it emerged

that the principles of GCAL can account for all other feature maps. A novel way of

modeling motion using temporal delays from the LGN sheets to V1 was used, and it

was shown that this results in direction maps similar to previous proposals and animal

studies.

Following this, a model which accounts for orientation, color and ocular dominance

preference was described, showing how multiple models can be joined to build a more

complex model. This feature combination was chosen because it was known not to

work in the previous attempt of building an all maps model. The combined model

resulted in a set of cortical maps comparable to those of animals.

The idea of combining models was taken further and a model which in principle

can account for all cortical maps simultaneously was drafted. However, the complexity

of this model and the corresponding parameters which have to be carefully tuned did

not allow the running of this model in a way that it results in cortical maps at this point

of time.

In summary, this thesis resulted in major improvements of the modeling software

Topographica, allowing modelers to focus on scientific questions rather than imple-

menting code. The pattern coordinator allows the use of predefined input patterns, and

the class-based submodels system improves the work-flow in various ways. A novel

way of modeling motion with temporal delays from LGN sheets to V1 was defined,

which is biologically plausible, in contrast to the previous implementation in Topo-

graphica with multiple lagged retina sheets. An all maps model was proposed, but the

time-consuming investigation of the complex interplay of parameters prohibited using

this model to produce cortical maps. This is not thought to be a failure of the un-

derlying principles of GCAL, but an issue in finding a parameter set which drives the

activation of neurons in V1 in a suitable way. Investigating the influence of parameters

on this complex model is expected to become a research project on its own.
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Carreira-Perpiñán, M. a. and Goodhill, G. J. (2002). Are Visual Cortex Maps Opti-

mized for Coverage? Neural Computation, 14(7):1545–60.
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