Imperial College London

Introduction and Background:

- > Applications for perspective taking include viewpoint invariant action recognition and more natural human-robot interaction.
- \succ Kessler & Thomson (2010) propose the embodied transformation account, where perspective taking is the mental simulation of the physical movement necessary to acquire another perspective.
- In Fischer & Demiris (ICRA2016) we suggested a perspective taking framework for humanoid robots.
- > Here, we introduce a computational model to systematically test this account. We advocate that perspective taking is governed by a competition process for visual attention between multiple forward models, where execution of recent models is preferred.

A Computational Model for Embodied Visual Perspective Taking: From Physical Movements to Mental Simulation

Architecture Overview:

 $z'_1(t+1)$ $\mathbf{z}(t)$ $\mathbf{u}_1 \longrightarrow$ $z'_2(t+1)$ $\mathbf{u}_2 \rightarrow$ $\mathbf{z}'_i(t+1)$ $\mathbf{z}_{i+1}'(t+1)$ $\mathbf{z}(t)$ \mathbf{u}_{i+1} $\mathbf{z}'_{N-1}(t+1)$ \mathbf{u}_{N-1} $\mathbf{z}'_N(t+1)$

- Forward models $\{f_i(\mathbf{z}(t), \mathbf{u}_i(t)) \mid f_i \in \mathbf{F}\}$ provide an estimate of state $\mathbf{z}(t+1)$ given current state $\mathbf{z}(t)$ and motor command $\mathbf{u}_i(t)$.
- \succ Forward model $f^*(t)$ that minimizes distance d is executed: $\mathbf{u}^*(t) = \operatorname{argmin} d(f_i(\mathbf{z}(t), \mathbf{u}_i(t)), \hat{\mathbf{z}})$
- $d(\mathbf{z}(t), \hat{\mathbf{z}}) = d_s(\mathbf{z}(t), \hat{\mathbf{z}})$ > Whereby: Euclidian distance
- Attentional component selects subset $A(t) \subset F$ of forward models on similarity of $\mathbf{u}_i(t)$ and $\mathbf{u}^*(t)$.

Paper & Code **Download:**

"Perspective taking is the ability to assume another person's visual and/or cognitive viewpoint"

Tobias Fischer and Yiannis Demiris www.imperial.ac.uk/PersonalRobotics

 $d_{\theta}(\mathbf{z}(t), \hat{\mathbf{z}})$ Angular disparity

to be executed. A(t) contains $f^*(t)$ and other forward models based

www.imperial.ac.uk/ PersonalRobotics

www.tobiasfischer.info

Experimental setup:

- Two simulated iCub humanoid robots performing a visual perspective taking task.
- One robot (self agent) has to decide whether a given object is to the left or right of the target agent.
- Posture and movement congruence are systematically varied.

Experimental results:

Solid, dark lines: model results; dashed, bright lines: human data

Conclusions:

 \succ The model response time is similar to those of humans only if attentional component is employed. We argue that humans implement an attentional mechanism similar to that of our model. > Testable predictions: 1) Habituation effect where response time depends on the congruence between the required movement direction of the current and previous mental simulations; 2) forced early **response** leads to bias towards the egocentric perspective.