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Find our code on GitHub: https://github.com/sgraine/bag-of-seagrass

Method Label Type Background Ferny Rounded Strappy Overall

Zero-shot CLIP [33] Nil 83.41 33.20 42.99 50.76 60.65

SimCLR [2] + Raine et al. [35] Patch 90.83 65.70 66.96 73.73 77.16

Raine et al. ResNet-50 [35] Patch 82.94 88.34 91.48 91.56 87.41

Noman et al. EfficientNet-B5 [29] Patch 84.43 93.18 92.50 86.17 88.52

Ours: SeaFeats Image 94.93 92.44 89.56 92.12 93.10

Ours: SeaCLIP Image 86.14 87.82 87.91 91.21 87.84

Ours: Ensemble of SeaFeats + SeaCLIP Image 94.97 95.42 94.69 96.29 95.33
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• Train ResNet-18 architecture by combining zero-shot pseudo-labels from CLIP with image-level 

seagrass labels

• Coastal ecosystems sequester carbon from the atmosphere

• Scientists require data on seagrass meadow extents and 

species composition to estimate blue carbon sequestration

• Machine learning enables automated processing of images 

and adaptation of robotic vehicle survey paths in real-time

• Imagery collected by the ‘FloatyBoat’ 

autonomous surface vehicle:

• We outperform the state-of-the-art by 6.8% (absolute F1 score) on the ‘DeepSeagrass’ dataset for the multi-

species case, and use only 3.9% of the labels as compared to patch-supervised methods:
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Fine-tune End-to-End: Feature Similarity Loss
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SeaFeats – weak supervision from feature similarity

• We obtain per-class template feature vectors (dynamically updated each epoch) by averaging the L2 

normalized features of patches labeled as each class at the image-level

• Fine-tune end-to-end by finding 

cosine similarity between patch 

features and class templates
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SeaCLIP – weak supervision from natural language prompts
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• Seagrass lacks distinct semantic features 

and has poorly defined boundaries

• Pixel-level labeling is too costly and time-

consuming; use image-level labels instead

• Reduces labels required by  96.1%

Our Approach

Real-world Deployment

(a) ‘FloatyBoat’ Query (b) Inference

(c) ‘Global Wetlands’ Query (d) Inference

Legend: Back-
ground Rounded StrappyFerny0 1 2 3 Fish (out of 

distribution)4

• New data sources containing out of distribution 

objects:

• SeaFeats is accurate (93.1% F1 

score)

• SeaCLIP more conservative, less 

likely to misclassify unclear 

patches, but lower accuracy overall 

(87.8% F1 score) 

• Ensemble of SeaFeats and 

SeaCLIP results in robust 

performance (95.3% F1 score)
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• CLIP can be used as a supervisory 

signal in domain-specific 

applications
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